IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i5p2285-d505873.html
   My bibliography  Save this article

Chaos Analysis of Urban Low-Carbon Traffic Based on Game Theory

Author

Listed:
  • Xiaohui Wu

    (School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Ren He

    (School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Meiling He

    (School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China)

Abstract

Developing urban low-carbon traffic is an effective measure to reduce traffic carbon emissions, which are important parts of greenhouse gas. In order to understand the development characteristics and regular patterns of urban low-carbon traffic, we present a game model that enables us to predict the possible range of travel mode choice and the impact of low-carbon awareness. Through chaos analysis and simulation of the model, the authors come to realize that the proportions of travel mode choice can reach an equilibrium under a certain urban traffic system. This equilibrium is related to low-carbon awareness and the situation of the urban traffic system. The research we have done suggests that in small cities with undeveloped traffic systems, the most effective measure to achieve urban low-carbon traffic is to increase the comprehensive costs of high-carbon travel. However, in big cities with developed traffic systems, raising low-carbon awareness of residents can greatly increase the proportion of low-carbon travelers and improve the stability of travel mode choice. The results could provide development strategies and policy suggestions for urban low-carbon traffic and reduce the adverse impact of urban traffic emissions on public health.

Suggested Citation

  • Xiaohui Wu & Ren He & Meiling He, 2021. "Chaos Analysis of Urban Low-Carbon Traffic Based on Game Theory," IJERPH, MDPI, vol. 18(5), pages 1-12, February.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:5:p:2285-:d:505873
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/5/2285/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/5/2285/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jing Li & Kevin Lo & Meng Guo, 2018. "Do Socio-Economic Characteristics Affect Travel Behavior? A Comparative Study of Low-Carbon and Non-Low-Carbon Shopping Travel in Shenyang City, China," IJERPH, MDPI, vol. 15(7), pages 1-11, June.
    2. Qian, Xinwu & Ukkusuri, Satish V., 2017. "Taxi market equilibrium with third-party hailing service," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 43-63.
    3. Algaba, Encarnación & Fragnelli, Vito & Llorca, Natividad & Sánchez-Soriano, Joaquin, 2019. "Horizontal cooperation in a multimodal public transport system: The profit allocation problem," European Journal of Operational Research, Elsevier, vol. 275(2), pages 659-665.
    4. Qiang Du & Yunqing Yan & Youdan Huang & Chanchan Hao & Jiao Wu, 2021. "Evolutionary Games of Low-Carbon Behaviors of Construction Stakeholders under Carbon Taxes," IJERPH, MDPI, vol. 18(2), pages 1-20, January.
    5. Cheng, Yung-Hsiang & Chang, Yu-Hern & Lu, I.J., 2015. "Urban transportation energy and carbon dioxide emission reduction strategies," Applied Energy, Elsevier, vol. 157(C), pages 953-973.
    6. Chiara Calastri & Simone Borghesi & Giorgio Fagiolo, 2019. "How do people choose their commuting mode? An evolutionary approach to travel choices," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(3), pages 887-912, October.
    7. Alf Kimms & Igor Kozeletskyi, 2017. "Consideration of multiple objectives in horizontal cooperation with an application to transportation planning," IISE Transactions, Taylor & Francis Journals, vol. 49(12), pages 1160-1171, December.
    8. Peng, Yu & Lu, Qian & Xiao, Yue, 2016. "A dynamic Stackelberg duopoly model with different strategies," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 128-134.
    9. Liu, Diyi & Du, Huibin & Southworth, Frank & Ma, Shoufeng, 2017. "The influence of social-psychological factors on the intention to choose low-carbon travel modes in Tianjin, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 42-53.
    10. Olner, Dan & Mitchell, Gordon & Heppenstall, Alison & Pryce, Gwilym, 2020. "The spatial economics of energy justice: modelling the trade impacts of increased transport costs in a low carbon transition and the implications for UK regional inequality," Energy Policy, Elsevier, vol. 140(C).
    11. Bergland, Harald & Pedersen, Pål Andreas, 2019. "Efficiency and traffic safety with pay for performance in road transportation," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 21-35.
    12. Zhang, Bin & Chen, Haitao & Du, Zhanjie & Wang, Zhaohua, 2020. "Does license plate rule induce low-carbon choices in residents’ daily travels: Motivation and impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    13. Kellner, Florian & Schneiderbauer, Miriam, 2019. "Further insights into the allocation of greenhouse gas emissions to shipments in road freight transportation: The pollution routing game," European Journal of Operational Research, Elsevier, vol. 278(1), pages 296-313.
    14. Rosenthal, Edward C., 2017. "A cooperative game approach to cost allocation in a rapid-transit network," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 64-77.
    15. Encarnação, Sara & Santos, Fernando P. & Santos, Francisco C. & Blass, Vered & Pacheco, Jorge M. & Portugali, Juval, 2018. "Paths to the adoption of electric vehicles: An evolutionary game theoretical approach," Transportation Research Part B: Methodological, Elsevier, vol. 113(C), pages 24-33.
    16. Thomas Klinger & Martin Lanzendorf, 2016. "Moving between mobility cultures: what affects the travel behavior of new residents?," Transportation, Springer, vol. 43(2), pages 243-271, March.
    17. Hörcher, Daniel & Graham, Daniel J., 2018. "Demand imbalances and multi-period public transport supply," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 106-126.
    18. Greg Marsden, & Jillian Anable, & Chatterton, Tim & Docherty, Iain & Faulconbridge, James & Murray, Lesley & Roby, Helen & Shires, Jeremy, 2020. "Studying disruptive events: Innovations in behaviour, opportunities for lower carbon transport policy?," Transport Policy, Elsevier, vol. 94(C), pages 89-101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi Wang & Wen Zhang & Hua Wang & Jue Wang & Mu-Jun Jiang, 2021. "How Does Income Inequality Influence Environmental Regulation in the Context of Corruption? A Panel Threshold Analysis Based on Chinese Provincial Data," IJERPH, MDPI, vol. 18(15), pages 1-18, July.
    2. Wing-Keung Wong, 2022. "Editorial Statement and Research Ideas on Using Behavioral Models in Environmental Research and Public Health with Applications," IJERPH, MDPI, vol. 19(12), pages 1-3, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Yan & Zhang, Lu & Zhang, Ming, 2022. "Research on the impact of public climate policy cognition on low-carbon travel based on SOR theory—Evidence from China," Energy, Elsevier, vol. 261(PA).
    2. Hao Wu & Rene van den Brink & Arantza Estevez-Fernandez, 2022. "Highway toll allocation," Tinbergen Institute Discussion Papers 22-036/II, Tinbergen Institute.
    3. Schaefer, Kerstin J. & Tuitjer, Leonie & Levin-Keitel, Meike, 2021. "Transport disrupted – Substituting public transport by bike or car under Covid 19," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 202-217.
    4. Tian, Yi & Ma, Junhai & Xie, Lei & Koivumäki, Timo & Seppänen, Veikko, 2020. "Coordination and control of multi-channel supply chain driven by consumers’ channel preference and sales effort," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    5. Garfield Wayne Hunter & Gideon Sagoe & Daniele Vettorato & Ding Jiayu, 2019. "Sustainability of Low Carbon City Initiatives in China: A Comprehensive Literature Review," Sustainability, MDPI, vol. 11(16), pages 1-37, August.
    6. Bergantiños, Gustavo & Moreno-Ternero, Juan D., 2022. "Monotonicity in sharing the revenues from broadcasting sports leagues," European Journal of Operational Research, Elsevier, vol. 297(1), pages 338-346.
    7. Toşa, Cristian & Sato, Hitomi & Morikawa, Takayuki & Miwa, Tomio, 2018. "Commuting behavior in emerging urban areas: Findings of a revealed-preferences and stated-intentions survey in Cluj-Napoca, Romania," Journal of Transport Geography, Elsevier, vol. 68(C), pages 78-93.
    8. Zou, Chen & Huang, Yongchun & Hu, Shiliang & Huang, Zhan, 2023. "Government participation in low-carbon technology transfer: An evolutionary game study," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    9. Yu Yu & Weisheng Yu, 2019. "The Complexion of Multi-period Stackelberg Triopoly Game with Bounded Rationality," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 457-478, January.
    10. Gupta, Monika & Bandyopadhyay, Kaushik Ranjan & Singh, Sanjay K., 2019. "Measuring effectiveness of carbon tax on Indian road passenger transport: A system dynamics approach," Energy Economics, Elsevier, vol. 81(C), pages 341-354.
    11. Thommen, Christoph & Hintermann, Beat, 2023. "Price versus Commitment: Managing the demand for off-peak train tickets in a field experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    12. Hopkins, Debbie & Stephenson, Janet, 2016. "The replication and reduction of automobility: Findings from Aotearoa New Zealand," Journal of Transport Geography, Elsevier, vol. 56(C), pages 92-101.
    13. An-Jin Shie & You-Yu Dai & Ming-Xing Shen & Li Tian & Ming Yang & Wen-Wei Luo & Yenchun Jim Wu & Zhao-Hui Su, 2022. "Diamond Model of Green Commitment and Low-Carbon Travel Motivation, Constraint, and Intention," IJERPH, MDPI, vol. 19(14), pages 1-21, July.
    14. Junwu Wang & Yinghui Song & Wei Wang & Suikuan Wang & Feng Guo & Jiequn Lu, 2022. "Marine Construction Waste Recycling Mechanism Considering Public Participation and Carbon Trading: A Study on Dynamic Modeling and Simulation Based on Sustainability Policy," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    15. Sheng, Lu & Wu, Xiao & He, Yan, 2023. "Impact of residential relocation on activity-travel behaviors between household couples: A case study of Kunming, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    16. Dominic Villeneuve & David Durán-Rodas & Anthony Ferri & Tobias Kuttler & Julie Magelund & Michael Mögele & Luca Nitschke & Eriketti Servou & Cat Silva, 2019. "What is Interdisciplinarity in Practice? Critical Reflections on Doing Mobility Research in an Intended Interdisciplinary Doctoral Research Group," Sustainability, MDPI, vol. 12(1), pages 1-20, December.
    17. Pye, Steve & Daly, Hannah, 2015. "Modelling sustainable urban travel in a whole systems energy model," Applied Energy, Elsevier, vol. 159(C), pages 97-107.
    18. Bergantiños, Gustavo & Moreno-Ternero, Juan D., 2020. "Allocating extra revenues from broadcasting sports leagues," Journal of Mathematical Economics, Elsevier, vol. 90(C), pages 65-73.
    19. Yang, Xuenan & Peng, Yu & Xiao, Yue & Wu, Xue, 2019. "Nonlinear dynamics of a duopoly Stackelberg game with marginal costs," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 185-191.
    20. Algaba, Encarnación & Béal, Sylvain & Fragnelli, Vito & Llorca, Natividad & Sánchez-Soriano, Joaquin, 2019. "Relationship between labeled network games and other cooperative games arising from attributes situations," Economics Letters, Elsevier, vol. 185(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:5:p:2285-:d:505873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.