IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v61y2014icp33-54.html
   My bibliography  Save this article

Multimodal pricing and optimal design of urban public transport: The interplay between traffic congestion and bus crowding

Author

Listed:
  • Tirachini, Alejandro
  • Hensher, David A.
  • Rose, John M.

Abstract

The interplay between congestion and crowding externalities in the design of urban bus systems is identified and analysed. A multimodal social welfare maximisation model with spatially disaggregated demand is developed, in which users choose between travelling by bus, car or walking in a transport corridor. Optimisation variables are bus fare, congestion toll, bus frequency, bus size, fare collection system, bus boarding policy and the number of seats inside buses. We find that optimal bus frequency results from a trade-off between the level of congestion inside buses, i.e., passengers’ crowding, and the level of congestion outside buses, i.e., the effect of frequency on slowing down both buses and cars in mixed-traffic roads. A numerical application shows that optimal frequency is quite sensitive to the assumptions on crowding costs, impact of buses on traffic congestion, and overall congestion level. If crowding matters to users, buses should have as many seats as possible, up to a minimum area that must be left free of seats. If for any other reason planners decide to have buses with fewer seats than optimal (e.g., to increase bus capacity), frequency should be increased to compensate for the discomfort imposed on public transport users. Finally, the consideration of crowding externalities (on both seating and standing) imposes a sizeable increase in the optimal bus fare, and consequently, a reduction of the optimal bus subsidy.

Suggested Citation

  • Tirachini, Alejandro & Hensher, David A. & Rose, John M., 2014. "Multimodal pricing and optimal design of urban public transport: The interplay between traffic congestion and bus crowding," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 33-54.
  • Handle: RePEc:eee:transb:v:61:y:2014:i:c:p:33-54
    DOI: 10.1016/j.trb.2014.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261514000046
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tirachini, Alejandro & Hensher, David A., 2011. "Bus congestion, optimal infrastructure investment and the choice of a fare collection system in dedicated bus corridors," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 828-844, June.
    2. Tirachini, Alejandro & Hensher, David A. & Jara-Díaz, Sergio R., 2010. "Restating modal investment priority with an improved model for public transport analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 1148-1168, November.
    3. Shyue Koong Chang & Schonfeld, Paul M., 1991. "Multiple period optimization of bus transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 25(6), pages 453-478, December.
    4. Mohring, Herbert, 1972. "Optimization and Scale Economies in Urban Bus Transportation," American Economic Review, American Economic Association, vol. 62(4), pages 591-604, September.
    5. Ian W. H. Parry & Kenneth A. Small, 2009. "Should Urban Transit Subsidies Be Reduced?," American Economic Review, American Economic Association, vol. 99(3), pages 700-724, June.
    6. De Borger, Bruno & Wouters, Sandra, 1998. "Transport externalities and optimal pricing and supply decisions in urban transportation: a simulation analysis for Belgium," Regional Science and Urban Economics, Elsevier, vol. 28(2), pages 163-197, March.
    7. Proost, Stef & Van Dender, Kurt, 2004. "7. Marginal Social Cost Pricing For All Transport Modes And The Effects Of Modal Budget Constraints," Research in Transportation Economics, Elsevier, vol. 9(1), pages 159-177, January.
    8. Glaister, Stephen & Lewis, Davis, 1978. "An integrated fares policy for transport in London," Journal of Public Economics, Elsevier, vol. 9(3), pages 341-355, June.
    9. Gonzales, Eric J. & Daganzo, Carlos F., 2013. "The evening commute with cars and transit: Duality results and user equilibrium for the combined morning and evening peaks," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 286-299.
    10. Basso, Leonardo J. & Guevara, Cristián Angelo & Gschwender, Antonio & Fuster, Marcelo, 2011. "Congestion pricing, transit subsidies and dedicated bus lanes: Efficient and practical solutions to congestion," Transport Policy, Elsevier, vol. 18(5), pages 676-684, September.
    11. Kijung Ahn, 2009. "Road Pricing and Bus Service Policies," Journal of Transport Economics and Policy, University of Bath, vol. 43(1), pages 25-53, January.
    12. Richard Arnott & An Yan, 2000. "The Two-Mode Problem: Second-Best Pricing and Capacity," Boston College Working Papers in Economics 474, Boston College Department of Economics.
    13. Oldfield, R. H. & Bly, P. H., 1988. "An analytic investigation of optimal bus size," Transportation Research Part B: Methodological, Elsevier, vol. 22(5), pages 319-337, October.
    14. Kraus, Marvin, 1991. "Discomfort externalities and marginal cost transit fares," Journal of Urban Economics, Elsevier, vol. 29(2), pages 249-259, March.
    15. Jara-Díaz, Sergio R. & Videla, Jorge, 1989. "Detection of income effect in mode choice: Theory and application," Transportation Research Part B: Methodological, Elsevier, vol. 23(6), pages 393-400, December.
    16. Zhao, Xiao-mei & Gao, Zi-you & Jia, Bin, 2007. "The capacity drop caused by the combined effect of the intersection and the bus stop in a CA model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 645-658.
    17. Tirachini, Alejandro, 2014. "The economics and engineering of bus stops: Spacing, design and congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 37-57.
    18. Sergio Jara-Díaz & Antonio Gschwender, 2003. "Towards a general microeconomic model for the operation of public transport," Transport Reviews, Taylor & Francis Journals, vol. 23(4), pages 453-469, July.
    19. Gonzales, Eric J. & Daganzo, Carlos F., 2012. "Morning commute with competing modes and distributed demand: User equilibrium, system optimum, and pricing," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1519-1534.
    20. Mayeres, Inge & Proost, Stef, 1997. " Optimal Tax and Public Investment Rules for Congestion Type of Externalities," Scandinavian Journal of Economics, Wiley Blackwell, vol. 99(2), pages 261-279, June.
    21. Wichiensin, Muanmas & Bell, Michael G.H. & Yang, Hai, 2007. "Impact of congestion charging on the transit market: An inter-modal equilibrium model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(7), pages 703-713, August.
    22. Proost, Stef & Dender, Kurt Van, 2008. "Optimal urban transport pricing in the presence of congestion, economies of density and costly public funds," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(9), pages 1220-1230, November.
    23. Jovicic, Goran & Hansen, Christian Overgaard, 2003. "A passenger travel demand model for Copenhagen," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(4), pages 333-349, May.
    24. Erik T. Verhoef & Kenneth A. Small, 2004. "Product Differentiation on Roads," Journal of Transport Economics and Policy, University of Bath, vol. 38(1), pages 127-156, January.
    25. Rodrigo Fernandez & Rosemarie Planzer, 2002. "On the capacity of bus transit systems," Transport Reviews, Taylor & Francis Journals, vol. 22(3), pages 267-293, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xiaopeng & Ma, Jiaqi & Cui, Jianxun & Ghiasi, Amir & Zhou, Fang, 2016. "Design framework of large-scale one-way electric vehicle sharing systems: A continuum approximation model," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 21-45.
    2. repec:eee:transa:v:103:y:2017:i:c:p:311-326 is not listed on IDEAS
    3. repec:eee:transa:v:111:y:2018:i:c:p:326-346 is not listed on IDEAS
    4. repec:spr:elmark:v:27:y:2017:i:3:d:10.1007_s12525-017-0257-2 is not listed on IDEAS
    5. Tirachini, Alejandro & Sun, Lijun & Erath, Alexander & Chakirov, Artem, 2016. "Valuation of sitting and standing in metro trains using revealed preferences," Transport Policy, Elsevier, vol. 47(C), pages 94-104.
    6. Ihab Kaddoura & Benjamin Kickhöfer & Andreas Neumann & Alejandro Tirachini, 2015. "Agent-based optimisation of public transport supply and pricing: impacts of activity scheduling decisions and simulation randomness," Transportation, Springer, vol. 42(6), pages 1039-1061, November.
    7. repec:eee:transe:v:109:y:2018:i:c:p:277-292 is not listed on IDEAS
    8. repec:gam:jsusta:v:10:y:2018:i:9:p:3341-:d:170664 is not listed on IDEAS
    9. Rojo, Marta & dell’Olio, Luigi & Gonzalo-Orden, Hernán & Ibeas, Ángel, 2015. "Inclusion of quality criteria in public bus service contracts in metropolitan areas," Transport Policy, Elsevier, vol. 42(C), pages 52-63.
    10. Batarce, Marco & Muñoz, Juan Carlos & Ortúzar, Juan de Dios, 2016. "Valuing crowding in public transport: Implications for cost-benefit analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 358-378.
    11. Luke Haywood & Martin Koning, 2013. "Estimating Crowding Costs in Public Transport," Discussion Papers of DIW Berlin 1293, DIW Berlin, German Institute for Economic Research.
    12. repec:eee:ecotra:v:14:y:2018:i:c:p:1-8 is not listed on IDEAS
    13. repec:eee:juecon:v:105:y:2018:i:c:p:133-148 is not listed on IDEAS
    14. Paraskevopoulos, Dimitris C. & Gürel, Sinan & Bektaş, Tolga, 2016. "The congested multicommodity network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 166-187.
    15. Agata Mesjasz-Lech & Agnieszka Strzelecka, 2015. "Organization Of Public Transport In The City As The Main Task Of Urban Logistics - Infrastructure Regional Background In Poland," Economy & Business Journal, International Scientific Publications, Bulgaria, vol. 9(1), pages 433-445.
    16. Dröes, Martijn I. & Rietveld, Piet, 2015. "Rail-based public transport and urban spatial structure: The interplay between network design, congestion and urban form," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 421-439.
    17. Haywood, Luke & Koning, Martin, 2015. "The distribution of crowding costs in public transport: New evidence from Paris," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 182-201.
    18. Suman, Hemant K. & Bolia, Nomesh B. & Tiwari, Geetam, 2017. "Comparing public bus transport service attributes in Delhi and Mumbai: Policy implications for improving bus services in Delhi," Transport Policy, Elsevier, vol. 56(C), pages 63-74.
    19. repec:eee:transb:v:108:y:2018:i:c:p:106-126 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:61:y:2014:i:c:p:33-54. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.