IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v46y2012i6p890-900.html
   My bibliography  Save this article

Integrating congestion pricing, transit subsidies and mode choice

Author

Listed:
  • Basso, Leonardo J.
  • Jara-Díaz, Sergio R.

Abstract

We model and analyze optimal (welfare maximizing) prices and design of transport services in a bimodal context. Car congestion and transit design are simultaneously introduced and consumers choose based on the full price they perceive. The optimization variables are the congestion toll, the transit fare (and hence the level of subsidies) and transit frequency. We obtain six main results: (i) the optimal car-transit split is generally different from the total cost minimizing one; (ii) optimal congestion and transit price are interdependent and have an optimal frequency attached; (iii) the optimal money price difference together with the optimal frequency yield the optimal modal split; (iv) if this modal split is used in traditional stand-alone formulations – where each mode is priced independently–resulting congestion tolls and transit subsidies and fares are consistent with the optimal money price difference; (v) self-financing of the transport sector is feasible; and (vi) investment in car infrastructure induces an increase in generalized cost for all public transport users.

Suggested Citation

  • Basso, Leonardo J. & Jara-Díaz, Sergio R., 2012. "Integrating congestion pricing, transit subsidies and mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(6), pages 890-900.
  • Handle: RePEc:eee:transa:v:46:y:2012:i:6:p:890-900
    DOI: 10.1016/j.tra.2012.02.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856412000316
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2012.02.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sergio R. Jara-Díaz & Antonio Gschwender, 2003. "From the Single Line Model to the Spatial Structure of Transit Services: Corridors or Direct?," Journal of Transport Economics and Policy, University of Bath, vol. 37(2), pages 261-277, May.
    2. Mohring, Herbert, 1972. "Optimization and Scale Economies in Urban Bus Transportation," American Economic Review, American Economic Association, vol. 62(4), pages 591-604, September.
    3. Ian W. H. Parry & Kenneth A. Small, 2009. "Should Urban Transit Subsidies Be Reduced?," American Economic Review, American Economic Association, vol. 99(3), pages 700-724, June.
    4. De Borger, Bruno & Wouters, Sandra, 1998. "Transport externalities and optimal pricing and supply decisions in urban transportation: a simulation analysis for Belgium," Regional Science and Urban Economics, Elsevier, vol. 28(2), pages 163-197, March.
    5. Gilles Duranton & Matthew A. Turner, 2011. "The Fundamental Law of Road Congestion: Evidence from US Cities," American Economic Review, American Economic Association, vol. 101(6), pages 2616-2652, October.
    6. Huang, Hai-Jun, 2000. "Fares and tolls in a competitive system with transit and highway: the case with two groups of commuters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 36(4), pages 267-284, December.
    7. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680.
    8. Danielis, Romeo & Marcucci, Edoardo, 2002. "Bottleneck road congestion pricing with a competing railroad service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 38(5), pages 379-388, September.
    9. Kockelman, Kara M. & Kalmanje, Sukumar, 2005. "Credit-based congestion pricing: a policy proposal and the public's response," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 671-690.
    10. Proost, Stef & Dender, Kurt Van, 2008. "Optimal urban transport pricing in the presence of congestion, economies of density and costly public funds," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(9), pages 1220-1230, November.
    11. Nie, Yu (Marco) & Liu, Yang, 2010. "Existence of self-financing and Pareto-improving congestion pricing: Impact of value of time distribution," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(1), pages 39-51, January.
    12. Basso, Leonardo J. & Guevara, Cristián Angelo & Gschwender, Antonio & Fuster, Marcelo, 2011. "Congestion pricing, transit subsidies and dedicated bus lanes: Efficient and practical solutions to congestion," Transport Policy, Elsevier, vol. 18(5), pages 676-684, September.
    13. Mogridge, Martin J H, 1997. "The self-defeating nature of urban road capacity policy : A review of theories, disputes and available evidence," Transport Policy, Elsevier, vol. 4(1), pages 5-23, January.
    14. Sergio Jara-Díaz & Antonio Gschwender, 2003. "Towards a general microeconomic model for the operation of public transport," Transport Reviews, Taylor & Francis Journals, vol. 23(4), pages 453-469, July.
    15. Sergio Jara-Díaz & Antonio Gschwender, 2009. "The effect of financial constraints on the optimal design of public transport services," Transportation, Springer, vol. 36(1), pages 65-75, January.
    16. Theodore Tsekeris & Stefan Voß, 2009. "Design and evaluation of road pricing: state-of-the-art and methodological advances," Netnomics, Springer, vol. 10(1), pages 5-52, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2020. "Beyond the Mohring effect: Scale economies induced by transit lines structures design," Economics of Transportation, Elsevier, vol. 22(C).
    2. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    3. Socorro, M. Pilar & Viecens, M. Fernanda, 2013. "The effects of airline and high speed train integration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 160-177.
    4. Ramos, Raúl & Silva, Hugo E., 2023. "Fare evasion in public transport: How does it affect the optimal design and pricing?," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    5. Wang, Wei (Walker) & Wang, David Z.W. & Zhang, Fangni & Sun, Huijun & Zhang, Wenyi & Wu, Jianjun, 2017. "Overcoming the Downs-Thomson Paradox by transit subsidy policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 126-147.
    6. Zheng, Nan & Geroliminis, Nikolas, 2020. "Area-based equitable pricing strategies for multimodal urban networks with heterogeneous users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 357-374.
    7. Li, Xun & Rey, David & Dixit, Vinayak V., 2018. "An axiomatic characterization of fairness in transport networks: Application to road pricing and spatial equity," Transport Policy, Elsevier, vol. 68(C), pages 142-157.
    8. Kundu, Tanmoy & Sheu, Jiuh-Biing, 2019. "Analyzing the effect of government subsidy on shippers’ mode switching behavior in the Belt and Road strategic context," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 175-202.
    9. Amitrajeet A. Batabyal & Hamid Beladi, 2022. "Commuting to work in cities: Bus, car, or train?," Regional Science Policy & Practice, Wiley Blackwell, vol. 14(3), pages 599-609, June.
    10. Anderson, Paul & Geroliminis, Nikolas, 2020. "Dynamic lane restrictions on congested arterials," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 224-243.
    11. Joana Cavadas & António Pais Antunes, 2019. "An optimization model for integrated transit-parking policy planning," Transportation, Springer, vol. 46(5), pages 1867-1891, October.
    12. Zhang, Fangni & Yang, Hai & Liu, Wei, 2014. "The Downs–Thomson Paradox with responsive transit service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 244-263.
    13. Tikoudis, Ioannis & Verhoef, Erik T. & van Ommeren, Jos N., 2015. "On revenue recycling and the welfare effects of second-best congestion pricing in a monocentric city," Journal of Urban Economics, Elsevier, vol. 89(C), pages 32-47.
    14. Zhao, Chuan-Lin & Leclercq, Ludovic, 2018. "Graphical solution for system optimum dynamic traffic assignment with day-based incentive routing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 87-100.
    15. Nir Sharav & Yoram Shiftan, 2021. "Optimal Urban Transit Investment Model and Its Application," Sustainability, MDPI, vol. 13(16), pages 1-29, August.
    16. Ansari Esfeh, Mohammad & Saidi, Saeid & Wirasinghe, S.C. & Kattan, Lina, 2022. "Waiting time and headway modeling considering unreliability in transit service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 219-233.
    17. Hayakawa, Keiichiro & Chikaraishi, Makoto, 2023. "Modeling the impact of e-hailing services on regional public transit considering transit-dependent people," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 91-118.
    18. Basso, Leonardo J. & Montero, Juan-Pablo & Sepúlveda, Felipe, 2021. "A practical approach for curbing congestion and air pollution: Driving restrictions with toll and vintage exemptions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 330-352.
    19. Canoquena, Joao Manuel da Costa, 2013. "Reconceptualising policy integration in road safety management," Transport Policy, Elsevier, vol. 25(C), pages 61-80.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    2. Basso, Leonardo J. & Guevara, Cristián Angelo & Gschwender, Antonio & Fuster, Marcelo, 2011. "Congestion pricing, transit subsidies and dedicated bus lanes: Efficient and practical solutions to congestion," Transport Policy, Elsevier, vol. 18(5), pages 676-684, September.
    3. Nie, Yu (Marco) & Yin, Yafeng, 2013. "Managing rush hour travel choices with tradable credit scheme," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 1-19.
    4. Ihab Kaddoura & Benjamin Kickhöfer & Andreas Neumann & Alejandro Tirachini, 2015. "Agent-based optimisation of public transport supply and pricing: impacts of activity scheduling decisions and simulation randomness," Transportation, Springer, vol. 42(6), pages 1039-1061, November.
    5. Tirachini, Alejandro & Hensher, David A. & Rose, John M., 2014. "Multimodal pricing and optimal design of urban public transport: The interplay between traffic congestion and bus crowding," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 33-54.
    6. Hörcher, Daniel & De Borger, Bruno & Seifu, Woubit & Graham, Daniel J., 2020. "Public transport provision under agglomeration economies," Regional Science and Urban Economics, Elsevier, vol. 81(C).
    7. De Borger, Bruno & Proost, Stef, 2015. "The political economy of public transport pricing and supply decisions," Economics of Transportation, Elsevier, vol. 4(1), pages 95-109.
    8. Sun, Yanshuo & Guo, Qianwen & Schonfeld, Paul & Li, Zhongfei, 2016. "Implications of the cost of public funds in public transit subsidization and regulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 236-250.
    9. De Borger, Bruno & Proost, Stef, 2022. "Covid-19 and optimal urban transport policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 20-42.
    10. Haywood, Luke & Koning, Martin, 2015. "The distribution of crowding costs in public transport: New evidence from Paris," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 182-201.
    11. Jara-Díaz, Sergio & Fielbaum, Andrés & Gschwender, Antonio, 2020. "Strategies for transit fleet design considering peak and off-peak periods using the single-line model," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 1-18.
    12. Martin W Adler & Federica Liberini & Antonio Russo & Jos N. van Ommeren, 2021. "The congestion relief benefit of public transit: evidence from Rome," Journal of Economic Geography, Oxford University Press, vol. 21(3), pages 397-431.
    13. Tirachini, Alejandro & Hensher, David A., 2011. "Bus congestion, optimal infrastructure investment and the choice of a fare collection system in dedicated bus corridors," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 828-844, June.
    14. Wang, Wei (Walker) & Wang, David Z.W. & Zhang, Fangni & Sun, Huijun & Zhang, Wenyi & Wu, Jianjun, 2017. "Overcoming the Downs-Thomson Paradox by transit subsidy policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 126-147.
    15. Börjesson, Maria & Fung, Chau Man & Proost, Stef & Yan, Zifei, 2018. "Do buses hinder cyclists or is it the other way around? Optimal bus fares, bus stops and cycling tolls," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 326-346.
    16. Tirachini, Alejandro & Proost, Stef, 2021. "Transport taxes and subsidies in developing countries: The effect of income inequality aversion," Economics of Transportation, Elsevier, vol. 25(C).
    17. de Palma, André & Kilani, Moez & Proost, Stef, 2015. "Discomfort in mass transit and its implication for scheduling and pricing," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 1-18.
    18. Asplund, Disa & Pyddoke, Roger, 2020. "Optimal fares and frequencies for bus services in a small city," Research in Transportation Economics, Elsevier, vol. 80(C).
    19. Xuto, Praj & Anderson, Richard J. & Graham, Daniel J. & Hörcher, Daniel, 2021. "Optimal infrastructure reinvestment in urban rail systems: A dynamic supply optimisation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 251-268.
    20. Joana Cavadas & António Pais Antunes, 2019. "An optimization model for integrated transit-parking policy planning," Transportation, Springer, vol. 46(5), pages 1867-1891, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:46:y:2012:i:6:p:890-900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.