IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v136y2020icp357-374.html
   My bibliography  Save this article

Area-based equitable pricing strategies for multimodal urban networks with heterogeneous users

Author

Listed:
  • Zheng, Nan
  • Geroliminis, Nikolas

Abstract

Equity issues among travellers are critical in congestion pricing. Failure to treat equity can lead to low acceptability towards pricing. In this paper, we develop congestion pricing schemes to improve both equity and traffic performance, for multimodal networks. We consider the equity issue by the existence of heterogeneous population, with respect to income level and value-of-time (VOT). An optimization framework is formulated for obtaining optimal toll schemes. We apply an aggregated network-level traffic flow model to reproduce congestion dynamics and mode choice behavior. The gain and loss for VOT-based user groups are investigated and discussed. We carry out simulation analysis over two pricing schemes: a unified toll and a VOT-based toll. In particular, we allow during the optimization process the VOT-based toll to obtain negative values for some users if it meets some system objectives. Our results confirm that significant differences in behavior and cost savings exist among groups, which justifies the need for a VOT-based pricing. It also demonstrates that properly-designed VOT-based tolls can improve the inequity in savings, e.g. users whose VOT values are lower may receive larger travel cost savings. Furthermore, a policy-oriented discussion on the design and implementation of the proposed equitable pricing schemes is provided.

Suggested Citation

  • Zheng, Nan & Geroliminis, Nikolas, 2020. "Area-based equitable pricing strategies for multimodal urban networks with heterogeneous users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 357-374.
  • Handle: RePEc:eee:transa:v:136:y:2020:i:c:p:357-374
    DOI: 10.1016/j.tra.2020.04.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856420305644
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2020.04.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Wei & Geroliminis, Nikolas, 2016. "Modeling the morning commute for urban networks with cruising-for-parking: An MFD approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 470-494.
    2. Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Dynamic clustering and propagation of congestion in heterogeneously congested urban traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 193-211.
    3. William Vickrey, 1939. "Averaging of Income for Income-Tax Purposes," Journal of Political Economy, University of Chicago Press, vol. 47, pages 379-379.
    4. Börjesson, Maria & Eliasson, Jonas & Hamilton, Carl, 2016. "Why experience changes attitudes to congestion pricing: The case of Gothenburg," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 1-16.
    5. Atkinson, A B & Sandmo, A, 1980. "Welfare Implications of the Taxation of Savings," Economic Journal, Royal Economic Society, vol. 90(359), pages 529-549, September.
    6. Maruyama, Takuya & Sumalee, Agachai, 2007. "Efficiency and equity comparison of cordon- and area-based road pricing schemes using a trip-chain equilibrium model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(7), pages 655-671, August.
    7. Ramezani, Mohsen & Haddad, Jack & Geroliminis, Nikolas, 2015. "Dynamics of heterogeneity in urban networks: aggregated traffic modeling and hierarchical control," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 1-19.
    8. Li, Tongfei & Sun, Huijun & Wu, Jianjun & Ge, Ying-en, 2017. "Optimal toll of new highway in the equilibrium framework of heterogeneous households' residential location choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 123-137.
    9. Börjesson, Maria & Eliasson, Jonas, 2014. "Experiences from the Swedish Value of Time study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 144-158.
    10. Zou, Bo & Kafle, Nabin & Wolfson, Ouri & Lin, Jie (Jane), 2015. "A mechanism design based approach to solving parking slot assignment in the information era," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 631-653.
    11. Small, Kenneth A., 2001. "The Value of Pricing," University of California Transportation Center, Working Papers qt0rm449sx, University of California Transportation Center.
    12. Börjesson, Maria & Eliasson, Jonas & Hugosson, Muriel B. & Brundell-Freij, Karin, 2012. "The Stockholm congestion charges—5 years on. Effects, acceptability and lessons learnt," Transport Policy, Elsevier, vol. 20(C), pages 1-12.
    13. Small, Kenneth A. & Yan, Jia, 2001. "The Value of "Value Pricing" of Roads: Second-Best Pricing and Product Differentiation," Journal of Urban Economics, Elsevier, vol. 49(2), pages 310-336, March.
    14. Fosgerau, Mogens, 2015. "Congestion in the bathtub," Economics of Transportation, Elsevier, vol. 4(4), pages 241-255.
    15. Xuegang Ban & Henry Liu, 2009. "A Link-Node Discrete-Time Dynamic Second Best Toll Pricing Model with a Relaxation Solution Algorithm," Networks and Spatial Economics, Springer, vol. 9(2), pages 243-267, June.
    16. Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
    17. Nie, Yu (Marco) & Liu, Yang, 2010. "Existence of self-financing and Pareto-improving congestion pricing: Impact of value of time distribution," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(1), pages 39-51, January.
    18. Hossan, Md Sakoat & Asgari, Hamidreza & Jin, Xia, 2016. "Investigating preference heterogeneity in Value of Time (VOT) and Value of Reliability (VOR) estimation for managed lanes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 638-649.
    19. Slemrod, Joel, 1990. "Optimal Taxation and Optimal Tax Systems," Journal of Economic Perspectives, American Economic Association, vol. 4(1), pages 157-178, Winter.
    20. Nikolas Geroliminis & David M. Levinson, 2009. "Cordon Pricing Consistent with the Physics of Overcrowding," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 219-240, Springer.
    21. Lei Zhang & David M. Levinson & Shanjiang Zhu, 2008. "Agent-Based Model of Price Competition, Capacity Choice, and Product Differentiation on Congested Networks," Journal of Transport Economics and Policy, University of Bath, vol. 42(3), pages 435-461, September.
    22. Zheng, Nan & Geroliminis, Nikolas, 2016. "Modeling and optimization of multimodal urban networks with limited parking and dynamic pricing," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 36-58.
    23. Lamotte, Raphaël & Geroliminis, Nikolas, 2018. "The morning commute in urban areas with heterogeneous trip lengths," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 794-810.
    24. Lehe, Lewis J., 2017. "Downtown tolls and the distribution of trip lengths," Economics of Transportation, Elsevier, vol. 11, pages 23-32.
    25. Ampountolas, Konstantinos & Zheng, Nan & Geroliminis, Nikolas, 2017. "Macroscopic modelling and robust control of bi-modal multi-region urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 616-637.
    26. van den Berg, Vincent & Verhoef, Erik T., 2011. "Congestion tolling in the bottleneck model with heterogeneous values of time," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 60-78, January.
    27. Arnott, R. & de Palma, A. & Lindsey, R., 1990. "Departure time and route choice for the morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 24(3), pages 209-228, June.
    28. Yan, Hai & Lam, William H. K., 1996. "Optimal road tolls under conditions of queueing and congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(5), pages 319-332, September.
    29. Arnott, Richard, 2013. "A bathtub model of downtown traffic congestion," Journal of Urban Economics, Elsevier, vol. 76(C), pages 110-121.
    30. Egan, Malcolm & Jakob, Michal, 2016. "Market mechanism design for profitable on-demand transport services," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 178-195.
    31. Arnott, Richard & Stiglitz, Joseph E., 1986. "Moral hazard and optimal commodity taxation," Journal of Public Economics, Elsevier, vol. 29(1), pages 1-24, February.
    32. Zheng, Nan & Waraich, Rashid A. & Axhausen, Kay W. & Geroliminis, Nikolas, 2012. "A dynamic cordon pricing scheme combining the Macroscopic Fundamental Diagram and an agent-based traffic model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1291-1303.
    33. Verhoef, Erik T., 2002. "Second-best congestion pricing in general networks. Heuristic algorithms for finding second-best optimal toll levels and toll points," Transportation Research Part B: Methodological, Elsevier, vol. 36(8), pages 707-729, September.
    34. A. B. Atkinson & N. H. Stern, 1974. "Pigou, Taxation and Public Goods," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(1), pages 119-128.
    35. Chung, Yi-Shih & Chiou, Yu-Chiun, 2017. "Willingness-to-pay for a bus fare reform: A contingent valuation approach with multiple bound dichotomous choices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 289-304.
    36. Gonzales, Eric J. & Daganzo, Carlos F., 2012. "Morning commute with competing modes and distributed demand: User equilibrium, system optimum, and pricing," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1519-1534.
    37. Yildirimoglu, Mehmet & Geroliminis, Nikolas, 2014. "Approximating dynamic equilibrium conditions with macroscopic fundamental diagrams," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 186-200.
    38. Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2016. "Clustering of heterogeneous networks with directional flows based on “Snake” similarities," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 250-269.
    39. Eliasson, Jonas & Mattsson, Lars-Göran, 2006. "Equity effects of congestion pricing: Quantitative methodology and a case study for Stockholm," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(7), pages 602-620, August.
    40. Daganzo, Carlos F., 2007. "Urban gridlock: Macroscopic modeling and mitigation approaches," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 49-62, January.
    41. Zhong, R.X. & Chen, C. & Huang, Y.P. & Sumalee, A. & Lam, W.H.K. & Xu, D.B., 2018. "Robust perimeter control for two urban regions with macroscopic fundamental diagrams: A control-Lyapunov function approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 687-707.
    42. Wu, Di & Yin, Yafeng & Lawphongpanich, Siriphong & Yang, Hai, 2012. "Design of more equitable congestion pricing and tradable credit schemes for multimodal transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1273-1287.
    43. Basso, Leonardo J. & Jara-Díaz, Sergio R., 2012. "Integrating congestion pricing, transit subsidies and mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(6), pages 890-900.
    44. Zheng, Nan & Geroliminis, Nikolas, 2013. "On the distribution of urban road space for multimodal congested networks," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 326-341.
    45. Anderson, Paul & Geroliminis, Nikolas, 2020. "Dynamic lane restrictions on congested arterials," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 224-243.
    46. Liu, Wei & Geroliminis, Nikolas, 2017. "Doubly dynamics for multi-modal networks with park-and-ride and adaptive pricing," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 162-179.
    47. Leclercq, Ludovic & Geroliminis, Nikolas, 2013. "Estimating MFDs in simple networks with route choice," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 468-484.
    48. Feng Xiao & Zhen Qian & H. Zhang, 2011. "The Morning Commute Problem with Coarse Toll and Nonidentical Commuters," Networks and Spatial Economics, Springer, vol. 11(2), pages 343-369, June.
    49. Yang, Hai & Tang, Wilson H. & Man Cheung, Wing & Meng, Qiang, 2002. "Profitability and welfare gain of private toll roads in a network with heterogeneous users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(6), pages 537-554, July.
    50. Mariotte, Guilhem & Leclercq, Ludovic & Laval, Jorge A., 2017. "Macroscopic urban dynamics: Analytical and numerical comparisons of existing models," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 245-267.
    51. Daganzo, Carlos F. & Lehe, Lewis J., 2015. "Distance-dependent congestion pricing for downtown zones," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 89-99.
    52. Chang, Tang-Hsien & Tseng, Jen-Sung & Hsieh, Tung-Hung & Hsu, Yu-Ting & Lu, Ying-Chih, 2018. "Green transportation implementation through distance-based road pricing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 53-64.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Ye & Mohajerpoor, Reza & Ramezani, Mohsen, 2021. "Perimeter control with real-time location-varying cordon," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 101-120.
    2. Loder, Allister & Bliemer, Michiel C.J. & Axhausen, Kay W., 2022. "Optimal pricing and investment in a multi-modal city — Introducing a macroscopic network design problem based on the MFD," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 113-132.
    3. Dantsuji, Takao & Takayama, Yuki & Fukuda, Daisuke, 2023. "Perimeter control in a mixed bimodal bathtub model," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 267-291.
    4. Kumarage, Sakitha & Yildirimoglu, Mehmet & Zheng, Zuduo, 2023. "A hybrid modelling framework for the estimation of dynamic origin–destination flows," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    5. Wang, Zhenjie & Zhang, Dezhi & Tavasszy, Lóránt & Fazi, Stefano, 2023. "Integrated multimodal freight service network design and pricing with a competing service integrator and heterogeneous shipper classes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    6. Ding, Heng & Di, Yunran & Feng, Zhongxiang & Zhang, Weihua & Zheng, Xiaoyan & Yang, Tao, 2022. "A perimeter control method for a congested urban road network with dynamic and variable ranges," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 160-187.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Wei & Szeto, Wai Yuen, 2020. "Learning and managing stochastic network traffic dynamics with an aggregate traffic representation," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 19-46.
    2. Yildirimoglu, Mehmet & Ramezani, Mohsen, 2020. "Demand management with limited cooperation among travellers: A doubly dynamic approach," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 267-284.
    3. Amirgholy, Mahyar & Gao, H. Oliver, 2017. "Modeling the dynamics of congestion in large urban networks using the macroscopic fundamental diagram: User equilibrium, system optimum, and pricing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 215-237.
    4. Dantsuji, Takao & Takayama, Yuki & Fukuda, Daisuke, 2023. "Perimeter control in a mixed bimodal bathtub model," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 267-291.
    5. Bao, Yue & Verhoef, Erik T. & Koster, Paul, 2021. "Leaving the tub: The nature and dynamics of hypercongestion in a bathtub model with a restricted downstream exit," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    6. Anupriya, & Bansal, Prateek & Graham, Daniel J., 2023. "Congestion in cities: Can road capacity expansions provide a solution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    7. Mariotte, Guilhem & Leclercq, Ludovic, 2019. "Flow exchanges in multi-reservoir systems with spillbacks," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 327-349.
    8. Huang, Y.P. & Xiong, J.H. & Sumalee, A. & Zheng, N. & Lam, W.H.K. & He, Z.B. & Zhong, R.X., 2020. "A dynamic user equilibrium model for multi-region macroscopic fundamental diagram systems with time-varying delays," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 1-25.
    9. Liu, Wei & Geroliminis, Nikolas, 2016. "Modeling the morning commute for urban networks with cruising-for-parking: An MFD approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 470-494.
    10. S. F. A. Batista & Ludovic Leclercq, 2019. "Regional Dynamic Traffic Assignment Framework for Macroscopic Fundamental Diagram Multi-regions Models," Transportation Science, INFORMS, vol. 53(6), pages 1563-1590, November.
    11. Ambühl, Lukas & Loder, Allister & Bliemer, Michiel C.J. & Menendez, Monica & Axhausen, Kay W., 2020. "A functional form with a physical meaning for the macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 119-132.
    12. Batista, S.F.A. & Leclercq, Ludovic & Geroliminis, Nikolas, 2019. "Estimation of regional trip length distributions for the calibration of the aggregated network traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 192-217.
    13. Yildirimoglu, Mehmet & Sirmatel, Isik Ilber & Geroliminis, Nikolas, 2018. "Hierarchical control of heterogeneous large-scale urban road networks via path assignment and regional route guidance," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 106-123.
    14. Zheng, Nan & Waraich, Rashid A. & Axhausen, Kay W. & Geroliminis, Nikolas, 2012. "A dynamic cordon pricing scheme combining the Macroscopic Fundamental Diagram and an agent-based traffic model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1291-1303.
    15. Amirgholy, Mahyar & Shahabi, Mehrdad & Gao, H. Oliver, 2017. "Optimal design of sustainable transit systems in congested urban networks: A macroscopic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 261-285.
    16. Anderson, Paul & Geroliminis, Nikolas, 2020. "Dynamic lane restrictions on congested arterials," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 224-243.
    17. Yang, Lei & Yin, Suwan & Han, Ke & Haddad, Jack & Hu, Minghua, 2017. "Fundamental diagrams of airport surface traffic: Models and applications," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 29-51.
    18. Ampountolas, Konstantinos & Zheng, Nan & Geroliminis, Nikolas, 2017. "Macroscopic modelling and robust control of bi-modal multi-region urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 616-637.
    19. Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Dynamic clustering and propagation of congestion in heterogeneously congested urban traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 193-211.
    20. Paipuri, Mahendra & Leclercq, Ludovic, 2020. "Bi-modal macroscopic traffic dynamics in a single region," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 257-290.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:136:y:2020:i:c:p:357-374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.