IDEAS home Printed from https://ideas.repec.org/a/eee/ecotra/v11-12y2017ip23-32.html
   My bibliography  Save this article

Downtown tolls and the distribution of trip lengths

Author

Listed:
  • Lehe, Lewis J.

Abstract

Currently, all downtown tolls are “access tolls,” meaning they charge for gross access to a zone, but tolls levied on distance-traveled are on the horizon. This paper shows how such tolls affect the distribution of trip lengths. A static model is presented in which travelers with potentially different trip lengths decide whether to drive into a downtown zone governed by a Macroscopic Fundamental Diagram (MFD), with each traveler’s choice probability declining as tolls and travel time rise. An application of Little's Law allows the model's equilibria to be derived in terms of a familiar supply/demand framework. Analysis proves and numerical simulation demonstrates that, if trip lengths and the value of a trip both vary across travelers, then access tolls inefficiently shift the distribution of car trip lengths toward long trips, whereas a distance toll can achieve the welfare-maximizing set of car trips.

Suggested Citation

  • Lehe, Lewis J., 2017. "Downtown tolls and the distribution of trip lengths," Economics of Transportation, Elsevier, vol. 11, pages 23-32.
  • Handle: RePEc:eee:ecotra:v:11-12:y:2017:i::p:23-32
    DOI: 10.1016/j.ecotra.2017.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2212012217300679
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecotra.2017.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olszewski, Piotr & Fan, Henry S. L. & Tan, Yan-Weng, 1995. "Area-wide traffic speed-flow model for the Singapore CBD," Transportation Research Part A: Policy and Practice, Elsevier, vol. 29(4), pages 273-281, July.
    2. Verhoef, Erik T., 2005. "Second-best congestion pricing schemes in the monocentric city," Journal of Urban Economics, Elsevier, vol. 58(3), pages 367-388, November.
    3. Verhoef, Erik T., 2002. "Second-best congestion pricing in general static transportation networks with elastic demands," Regional Science and Urban Economics, Elsevier, vol. 32(3), pages 281-310, May.
    4. Arnott, Richard, 2013. "A bathtub model of downtown traffic congestion," Journal of Urban Economics, Elsevier, vol. 76(C), pages 110-121.
    5. Eliasson, Jonas, 2014. "The Stockholm congestion charges: an overview," Working papers in Transport Economics 2014:7, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    6. Arnott, Richard & Kokoza, Anatolii & Naji, Mehdi, 2016. "Equilibrium traffic dynamics in a bathtub model: A special case," Economics of Transportation, Elsevier, vol. 7, pages 38-52.
    7. Arnott, Richard & Inci, Eren, 2010. "The stability of downtown parking and traffic congestion," Journal of Urban Economics, Elsevier, vol. 68(3), pages 260-276, November.
    8. Eliasson, Jonas, 2008. "Lessons from the Stockholm congestion charging trial," Transport Policy, Elsevier, vol. 15(6), pages 395-404, November.
    9. Jonathan Leape, 2006. "The London Congestion Charge," Journal of Economic Perspectives, American Economic Association, vol. 20(4), pages 157-176, Fall.
    10. Santos, Georgina & Li, Wai Wing & Koh, Winston T.H, 2004. "9. Transport Policies In Singapore," Research in Transportation Economics, Elsevier, vol. 9(1), pages 209-235, January.
    11. Yang, Hai & Huang, Hai-Jun, 1998. "Principle of marginal-cost pricing: how does it work in a general road network?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(1), pages 45-54, January.
    12. Verhoef, Erik T., 1999. "Time, speeds, flows and densities in static models of road traffic congestion and congestion pricing," Regional Science and Urban Economics, Elsevier, vol. 29(3), pages 341-369, May.
    13. Daganzo, Carlos F., 2007. "Urban gridlock: Macroscopic modeling and mitigation approaches," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 49-62, January.
    14. Gibson, Matthew & Carnovale, Maria, 2015. "The effects of road pricing on driver behavior and air pollution," Journal of Urban Economics, Elsevier, vol. 89(C), pages 62-73.
    15. May, A. D. & Milne, D. S., 2000. "Effects of alternative road pricing systems on network performance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(6), pages 407-436, August.
    16. Fosgerau, Mogens, 2015. "Congestion in the bathtub," Economics of Transportation, Elsevier, vol. 4(4), pages 241-255.
    17. Geroliminis, Nikolas & Daganzo, Carlos F., 2008. "Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 759-770, November.
    18. Mun, Se-il & Konishi, Ko-ji & Yoshikawa, Kazuhiro, 2003. "Optimal cordon pricing," Journal of Urban Economics, Elsevier, vol. 54(1), pages 21-38, July.
    19. Meng, Qiang & Liu, Zhiyuan & Wang, Shuaian, 2012. "Optimal distance tolls under congestion pricing and continuously distributed value of time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(5), pages 937-957.
    20. Daganzo, Carlos F. & Lehe, Lewis J., 2016. "Traffic flow on signalized streets," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 56-69.
    21. Daganzo, Carlos F. & Geroliminis, Nikolas, 2008. "An analytical approximation for the macroscopic fundamental diagram of urban traffic," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 771-781, November.
    22. Nikolas Geroliminis & David M. Levinson, 2009. "Cordon Pricing Consistent with the Physics of Overcrowding," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 219-240, Springer.
    23. Börjesson, Maria & Kristoffersson, Ida, 2015. "The Gothenburg congestion charge. Effects, design and politics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 134-146.
    24. Mariotte, Guilhem & Leclercq, Ludovic & Laval, Jorge A., 2017. "Macroscopic urban dynamics: Analytical and numerical comparisons of existing models," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 245-267.
    25. George A. Akerlof, 1970. "The Market for "Lemons": Quality Uncertainty and the Market Mechanism," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 84(3), pages 488-500.
    26. Gonzales, Eric J., 2015. "Coordinated pricing for cars and transit in cities with hypercongestion," Economics of Transportation, Elsevier, vol. 4(1), pages 64-81.
    27. Daganzo, Carlos F. & Lehe, Lewis J., 2015. "Distance-dependent congestion pricing for downtown zones," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 89-99.
    28. Georgina Santos, 2008. "The London Congestion Charging Scheme, 2003–2006," Chapters, in: Harry W. Richardson & Chang-Hee Christine Bae (ed.), Road Congestion Pricing in Europe, chapter 8, Edward Elgar Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Nan & Geroliminis, Nikolas, 2020. "Area-based equitable pricing strategies for multimodal urban networks with heterogeneous users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 357-374.
    2. Liu, Wei & Szeto, Wai Yuen, 2020. "Learning and managing stochastic network traffic dynamics with an aggregate traffic representation," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 19-46.
    3. Peiyu Jing & Ravi Seshadri & Takanori Sakai & Ali Shamshiripour & Andre Romano Alho & Antonios Lentzakis & Moshe E. Ben-Akiva, 2023. "Evaluating congestion pricing schemes using agent-based passenger and freight microsimulation," Papers 2305.07318, arXiv.org.
    4. Pandey, Ayush & Lehe, Lewis J. & Gayah, Vikash V., 2024. "Local stability of traffic equilibria in an isotropic network," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    5. Lehe, Lewis J. & Pandey, Ayush, 2020. "Hyperdemand: A static traffic model with backward-bending demand curves," Economics of Transportation, Elsevier, vol. 24(C).
    6. Lehe, Lewis J. & Pandey, Ayush, 2024. "A bathtub model of transit congestion," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    7. Lehe, Lewis J., 2020. "Winners and losers from road pricing with heterogeneous travelers and a mixed-traffic bus alternative," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 432-446.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lehe, Lewis J. & Pandey, Ayush, 2024. "A bathtub model of transit congestion," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    2. Amirgholy, Mahyar & Gao, H. Oliver, 2017. "Modeling the dynamics of congestion in large urban networks using the macroscopic fundamental diagram: User equilibrium, system optimum, and pricing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 215-237.
    3. Pandey, Ayush & Lehe, Lewis J. & Gayah, Vikash V., 2024. "Local stability of traffic equilibria in an isotropic network," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    4. Chen, Zhi & Wu, Wen-Xiang & Huang, Hai-Jun & Shang, Hua-Yan, 2022. "Modeling traffic dynamics in periphery-downtown urban networks combining Vickrey's theory with Macroscopic Fundamental Diagram: user equilibrium, system optimum, and cordon pricing," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 278-303.
    5. Bao, Yue & Verhoef, Erik T. & Koster, Paul, 2021. "Leaving the tub: The nature and dynamics of hypercongestion in a bathtub model with a restricted downstream exit," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    6. Daganzo, Carlos F & Lehe, Lewis, 2016. "Zone Pricing in Theory and Practice," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt39f0v6kq, Institute of Transportation Studies, UC Berkeley.
    7. Zheng, Nan & Geroliminis, Nikolas, 2020. "Area-based equitable pricing strategies for multimodal urban networks with heterogeneous users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 357-374.
    8. Liu, Wei & Geroliminis, Nikolas, 2016. "Modeling the morning commute for urban networks with cruising-for-parking: An MFD approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 470-494.
    9. Yildirimoglu, Mehmet & Ramezani, Mohsen, 2020. "Demand management with limited cooperation among travellers: A doubly dynamic approach," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 267-284.
    10. Liu, Wei & Szeto, Wai Yuen, 2020. "Learning and managing stochastic network traffic dynamics with an aggregate traffic representation," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 19-46.
    11. Huang, Y.P. & Xiong, J.H. & Sumalee, A. & Zheng, N. & Lam, W.H.K. & He, Z.B. & Zhong, R.X., 2020. "A dynamic user equilibrium model for multi-region macroscopic fundamental diagram systems with time-varying delays," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 1-25.
    12. Lamotte, Raphaël & Geroliminis, Nikolas, 2018. "The morning commute in urban areas with heterogeneous trip lengths," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 794-810.
    13. Arnott, Richard & Buli, Joshua, 2018. "Solving for equilibrium in the basic bathtub model," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 150-175.
    14. Haddad, Jack & Zheng, Zhengfei, 2020. "Adaptive perimeter control for multi-region accumulation-based models with state delays," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 133-153.
    15. Yang, Lei & Yin, Suwan & Han, Ke & Haddad, Jack & Hu, Minghua, 2017. "Fundamental diagrams of airport surface traffic: Models and applications," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 29-51.
    16. Dantsuji, Takao & Takayama, Yuki & Fukuda, Daisuke, 2023. "Perimeter control in a mixed bimodal bathtub model," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 267-291.
    17. Eliasson, Jonas, 2017. "Congestion pricing," MPRA Paper 88224, University Library of Munich, Germany.
    18. Richard Arnott & Anatolii Kokoza & Mehdi Naji, 2015. "A Model of Rush-Hour Traffic in an Isotropic Downtown Area," Working Papers 201511, University of California at Riverside, Department of Economics.
    19. Jin, Wen-Long, 2020. "Generalized bathtub model of network trip flows," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 138-157.
    20. Zheng, Nan & Waraich, Rashid A. & Axhausen, Kay W. & Geroliminis, Nikolas, 2012. "A dynamic cordon pricing scheme combining the Macroscopic Fundamental Diagram and an agent-based traffic model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1291-1303.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecotra:v:11-12:y:2017:i::p:23-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecotra .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.