IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2019i1p206-d302029.html
   My bibliography  Save this article

Life Cycle Cost, Energy and Carbon Assessments of Beijing-Shanghai High-Speed Railway

Author

Listed:
  • Sakdirat Kaewunruen

    (School of Engineering, University of Birmingham, Birmingham B15 2TT, UK)

  • Jessada Sresakoolchai

    (School of Engineering, University of Birmingham, Birmingham B15 2TT, UK)

  • Junying Peng

    (School of Engineering, University of Birmingham, Birmingham B15 2TT, UK)

Abstract

The Beijing-Shanghai High-Speed Railway (HSR) is one of the most important railways in China, but it also has impacts on the economy and the environment while creating social benefits. This paper uses a life cycle assessment (LCA) method and a life cycle cost (LCC) analysis method to summarize the energy consumption, carbon emissions and costs of the Beijing-Shanghai HSR from the perspective of life cycle, and proposes some corresponding suggestions based on the results. The research objective of this paper is to analyse the carbon emissions, energy consumption, and costs of the rail system which includes the structure of the track and earthwork of the Beijing-Shanghai HSR during four stages: conception stage, construction stage, operation and maintenance stage, and disposal stage. It is concluded that the majority of the carbon emissions and energy consumption of the entire rail system are from the construction stage, accounting for 64.86% and 54.31% respectively. It is followed by the operation and maintenance stage with 31.60% and 35.32% respectively. In contrast, the amount of carbon emissions and energy consumption from the conception stage is too small to be considered. Furthermore, cement is the major contributor to the carbon emissions and energy consumption during the construction stage. As for the cost, the construction stage spends the largest amount of money (US$4614.00 million), followed by the operation and maintenance stage (US$910.61 million). Improving production technologies and choosing construction machinery are proposed to reduce the cost and protect the environment.

Suggested Citation

  • Sakdirat Kaewunruen & Jessada Sresakoolchai & Junying Peng, 2019. "Life Cycle Cost, Energy and Carbon Assessments of Beijing-Shanghai High-Speed Railway," Sustainability, MDPI, vol. 12(1), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:206-:d:302029
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/1/206/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/1/206/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansi Liu & Sheng Zhou & Tianduo Peng & Xunmin Ou, 2017. "Life Cycle Energy Consumption and Greenhouse Gas Emissions Analysis of Natural Gas-Based Distributed Generation Projects in China," Energies, MDPI, vol. 10(10), pages 1-14, October.
    2. Ke, Jing & Zheng, Nina & Fridley, David & Price, Lynn & Zhou, Nan, 2012. "Potential energy savings and CO2 emissions reduction of China's cement industry," Energy Policy, Elsevier, vol. 45(C), pages 739-751.
    3. Yan, Xiaoyu & Crookes, Roy J., 2009. "Life cycle analysis of energy use and greenhouse gas emissions for road transportation fuels in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2505-2514, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alireza Tabrizikahou & Piotr Nowotarski, 2021. "Mitigating the Energy Consumption and the Carbon Emission in the Building Structures by Optimization of the Construction Processes," Energies, MDPI, vol. 14(11), pages 1-20, June.
    2. Fang, Zigeng & Yan, Jiayi & Lu, Qiuchen & Chen, Long & Yang, Pu & Tang, Junqing & Jiang, Feng & Broyd, Tim & Hong, Jingke, 2023. "A systematic literature review of carbon footprint decision-making approaches for infrastructure and building projects," Applied Energy, Elsevier, vol. 335(C).
    3. Sakdirat Kaewunruen & Jessada Sresakoolchai & Wentao Ma & Olisa Phil-Ebosie, 2021. "Digital Twin Aided Vulnerability Assessment and Risk-Based Maintenance Planning of Bridge Infrastructures Exposed to Extreme Conditions," Sustainability, MDPI, vol. 13(4), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xuewei & Yuan, Zengwei & Xu, Yuan & Jiang, Songyan, 2017. "Greening cement in China: A cost-effective roadmap," Applied Energy, Elsevier, vol. 189(C), pages 233-244.
    2. Sapkota, Krishna & Gemechu, Eskinder & Oni, Abayomi Olufemi & Ma, Linwei & Kumar, Amit, 2022. "Greenhouse gas emissions from Canadian oil sands supply chains to China," Energy, Elsevier, vol. 251(C).
    3. Xunmin Ou & Xiaoyu Yan & Xu Zhang & Xiliang Zhang, 2013. "Life-Cycle Energy Use and Greenhouse Gas Emissions Analysis for Bio-Liquid Jet Fuel from Open Pond-Based Micro-Algae under China Conditions," Energies, MDPI, vol. 6(9), pages 1-27, September.
    4. Stephany Isabel Vallarta-Serrano & Ana Bricia Galindo-Muro & Riccardo Cespi & Rogelio Bustamante-Bello, 2023. "Analysis of GHG Emission from Cargo Vehicles in Megacities: The Case of the Metropolitan Zone of the Valley of Mexico," Energies, MDPI, vol. 16(13), pages 1-19, June.
    5. Wang, Xiaolei & Lin, Boqiang, 2016. "How to reduce CO2 emissions in China׳s iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1496-1505.
    6. Talaei, Alireza & Pier, David & Iyer, Aishwarya V. & Ahiduzzaman, Md & Kumar, Amit, 2019. "Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation options for the cement industry," Energy, Elsevier, vol. 170(C), pages 1051-1066.
    7. Zhang, Yong & Yu, Yifeng & Zou, Bai, 2011. "Analyzing public awareness and acceptance of alternative fuel vehicles in China: The case of EV," Energy Policy, Elsevier, vol. 39(11), pages 7015-7024.
    8. Nayeah Kim & Yun Seop Hwang & Mun Ho Hwang, 2019. "New projection of GHG reduction potentials for Korea’s cement industry and comparison with Roadmap 2030," Energy & Environment, , vol. 30(3), pages 499-521, May.
    9. Li, Nan & Ma, Ding & Chen, Wenying, 2017. "Quantifying the impacts of decarbonisation in China’s cement sector: A perspective from an integrated assessment approach," Applied Energy, Elsevier, vol. 185(P2), pages 1840-1848.
    10. Gao, Tianming & Shen, Lei & Shen, Ming & Liu, Litao & Chen, Fengnan & Gao, Li, 2017. "Evolution and projection of CO2 emissions for China's cement industry from 1980 to 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 522-537.
    11. Ke, Jing & Price, Lynn & McNeil, Michael & Khanna, Nina Zheng & Zhou, Nan, 2013. "Analysis and practices of energy benchmarking for industry from the perspective of systems engineering," Energy, Elsevier, vol. 54(C), pages 32-44.
    12. Song, Malin & Zheng, Wanping & Wang, Zeya, 2016. "Environmental efficiency and energy consumption of highway transportation systems in China," International Journal of Production Economics, Elsevier, vol. 181(PB), pages 441-449.
    13. Orsi, Francesco & Muratori, Matteo & Rocco, Matteo & Colombo, Emanuela & Rizzoni, Giorgio, 2016. "A multi-dimensional well-to-wheels analysis of passenger vehicles in different regions: Primary energy consumption, CO2 emissions, and economic cost," Applied Energy, Elsevier, vol. 169(C), pages 197-209.
    14. Zhou, Wenji & Jiang, Di & Chen, Dingjiang & Griffy-Brown, Charla & Jin, Yong & Zhu, Bing, 2016. "Capturing CO2 from cement plants: A priority for reducing CO2 emissions in China," Energy, Elsevier, vol. 106(C), pages 464-474.
    15. Jianfei Shen & Fengyun Li & Di Shi & Hongze Li & Xinhua Yu, 2018. "Factors Affecting the Economics of Distributed Natural Gas-Combined Cooling, Heating and Power Systems in China: A Systematic Analysis Based on the Integrated Decision Making Trial and Evaluation Labo," Energies, MDPI, vol. 11(9), pages 1-28, September.
    16. Zhichun Yu & Yanjiao Wan, 2023. "Can the Growth of the Digital Economy Be Beneficial for Urban Decarbonization? A Study from Chinese Cities," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    17. Doh Dinga, Christian & Wen, Zongguo, 2021. "Many-objective optimization of energy conservation and emission reduction in China’s cement industry," Applied Energy, Elsevier, vol. 304(C).
    18. Fei Wang & Yili Yu & Xinkang Wang & Hui Ren & Miadreza Shafie-Khah & João P. S. Catalão, 2018. "Residential Electricity Consumption Level Impact Factor Analysis Based on Wrapper Feature Selection and Multinomial Logistic Regression," Energies, MDPI, vol. 11(5), pages 1-26, May.
    19. Liu, Huacai & Huang, Yanqin & Yuan, Hongyou & Yin, Xiuli & Wu, Chuangzhi, 2018. "Life cycle assessment of biofuels in China: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 301-322.
    20. Junxiao Wei & Kuang Cen, 2019. "A preliminary calculation of cement carbon dioxide in China from 1949 to 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1343-1362, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:206-:d:302029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.