IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v162y2025icp477-492.html
   My bibliography  Save this article

The impact of intercity multi-transportation networks on enterprises' total factor productivity

Author

Listed:
  • Liu, Le
  • Jia, Shanming
  • Liu, Pengzhen

Abstract

The intercity multi-transportation networks (MTN), facilitated by aviation and high-speed rail, transcends distance constraints on factor flows, significantly enhancing enterprises' total factor productivity (TFP). This study empirically examines the impact of MTN centrality on enterprises' TFP using a panel dataset (“city-firm”) of Chinese A-share listed enterprises from 2010 to 2020. This study reveals several key findings: Firstly, increased MTN centrality markedly boosts enterprises' TFP levels. Secondly, these networks enhance enterprises' TFP by strengthening knowledge spillovers, adjusting industrial structures and achieving economies of scale through intercity connections via aviation and high-speed rail. However, knowledge spillover enhancement and industrial structure adjustment play a more prominent role in advancing the technological progress of enterprises, while economies of scale primarily contribute to improving technological efficiency. Thirdly, the impact of MTN centrality on enterprises' TFP varies across space and time. Core cities experience more pronounced improvements compared to peripheral cities. Overall, the study underscores the positive impact of intercity MTN, supported by infrastructure like high-speed rail and aviation, on micro-enterprises and their internal mechanisms.

Suggested Citation

  • Liu, Le & Jia, Shanming & Liu, Pengzhen, 2025. "The impact of intercity multi-transportation networks on enterprises' total factor productivity," Transport Policy, Elsevier, vol. 162(C), pages 477-492.
  • Handle: RePEc:eee:trapol:v:162:y:2025:i:c:p:477-492
    DOI: 10.1016/j.tranpol.2024.12.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X24003925
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2024.12.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dave Donaldson, 2018. "Railroads of the Raj: Estimating the Impact of Transportation Infrastructure," American Economic Review, American Economic Association, vol. 108(4-5), pages 899-934, April.
    2. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    3. Gilles Duranton & Matthew A. Turner, 2011. "The Fundamental Law of Road Congestion: Evidence from US Cities," American Economic Review, American Economic Association, vol. 101(6), pages 2616-2652, October.
    4. Jiao, Jingjuan & Wang, Jiaoe & Jin, Fengjun, 2017. "Impacts of high-speed rail lines on the city network in China," Journal of Transport Geography, Elsevier, vol. 60(C), pages 257-266.
    5. Jia, Shanming & Zhou, Chunyu & Qin, Chenglin, 2017. "No difference in effect of high-speed rail on regional economic growth based on match effect perspective?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 144-157.
    6. Kim, Hyojin & Sultana, Selima, 2015. "The impacts of high-speed rail extensions on accessibility and spatial equity changes in South Korea from 2004 to 2018," Journal of Transport Geography, Elsevier, vol. 45(C), pages 48-61.
    7. Benjamin Faber, 2014. "Trade Integration, Market Size, and Industrialization: Evidence from China's National Trunk Highway System," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(3), pages 1046-1070.
    8. repec:bla:scandj:v:99:y:1997:i:1:p:119-27 is not listed on IDEAS
    9. Krugman, Paul, 1991. "Increasing Returns and Economic Geography," Journal of Political Economy, University of Chicago Press, vol. 99(3), pages 483-499, June.
    10. Kim, Hyungtai & Ahn, Sanghoon & Ulfarsson, Gudmundur F., 2021. "Impacts of transportation and industrial complexes on establishment-level productivity growth in Korea," Transport Policy, Elsevier, vol. 100(C), pages 89-97.
    11. Rolf Färe & Emili Grifell‐Tatjé & Shawna Grosskopf & C. A. Knox Lovell, 1997. "Biased Technical Change and the Malmquist Productivity Index," Scandinavian Journal of Economics, Wiley Blackwell, vol. 99(1), pages 119-127, March.
    12. Kim, Hyojin & Sultana, Selima & Weber, Joe, 2018. "A geographic assessment of the economic development impact of Korean high-speed rail stations," Transport Policy, Elsevier, vol. 66(C), pages 127-137.
    13. Pu, Han & Li, Yinzhen & Ma, Changxi, 2022. "Topology analysis of Lanzhou public transport network based on double-layer complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    14. Guimei Wang & Kaiming Cheng & Muhammad Salman, 2024. "High-speed Railway and Green Total Factor Productivity: Taking Industrial Structure as a Mediator," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(2), pages 6908-6936, June.
    15. Evert Meijers & Martijn Burger & Evert J. Meijers & Martijn J. Burger & Marloes M. Hoogerbrugge, 2016. "Borrowing size in networks of cities: City size, network connectivity and metropolitan functions in Europe," Papers in Regional Science, Wiley Blackwell, vol. 95(1), pages 181-198, March.
    16. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    17. Daron Acemoglu & Simon Johnson & James A. Robinson, 2001. "The Colonial Origins of Comparative Development: An Empirical Investigation," American Economic Review, American Economic Association, vol. 91(5), pages 1369-1401, December.
    18. Liu, Shuli & Wan, Yulai & Zhang, Anming, 2020. "Does China’s high-speed rail development lead to regional disparities? A network perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 299-321.
    19. Andrew B. Bernard & Andreas Moxnes & Yukiko U. Saito, 2019. "Production Networks, Geography, and Firm Performance," Journal of Political Economy, University of Chicago Press, vol. 127(2), pages 639-688.
    20. Ciccone, Antonio & Hall, Robert E, 1996. "Productivity and the Density of Economic Activity," American Economic Review, American Economic Association, vol. 86(1), pages 54-70, March.
    21. Xingjian Liu & Ben Derudder & Kang Wu, 2016. "Measuring Polycentric Urban Development in China: An Intercity Transportation Network Perspective," Regional Studies, Taylor & Francis Journals, vol. 50(8), pages 1302-1315, August.
    22. Nathalie Lazaric & Christian Longhi & Catherine Thomas, 2008. "Gatekeepers of Knowledge versus Platforms of Knowledge: From Potential to Realized Absorptive Capacity," Regional Studies, Taylor & Francis Journals, vol. 42(6), pages 837-852.
    23. Paul Goldsmith-Pinkham & Isaac Sorkin & Henry Swift, 2020. "Bartik Instruments: What, When, Why, and How," American Economic Review, American Economic Association, vol. 110(8), pages 2586-2624, August.
    24. James Levinsohn & Amil Petrin, 2003. "Estimating Production Functions Using Inputs to Control for Unobservables," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(2), pages 317-341.
    25. Robert Huggins & Piers Thompson, 2017. "Networks and regional economic growth: A spatial analysis of knowledge ties," Environment and Planning A, , vol. 49(6), pages 1247-1265, June.
    26. Yang, Xuehui & Zhang, Huirong & Li, Yan, 2022. "High-speed railway, factor flow and enterprise innovation efficiency: An empirical analysis on micro data," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    27. Jaffe, Adam B, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value," American Economic Review, American Economic Association, vol. 76(5), pages 984-1001, December.
    28. Taotao Deng, 2013. "Impacts of Transport Infrastructure on Productivity and Economic Growth: Recent Advances and Research Challenges," Transport Reviews, Taylor & Francis Journals, vol. 33(6), pages 686-699, November.
    29. Rafael Boix & Joan Trullén, 2007. "Knowledge, networks of cities and growth in regional urban systems," Papers in Regional Science, Wiley Blackwell, vol. 86(4), pages 551-574, November.
    30. Herzog, Ian, 2021. "National transportation networks, market access, and regional economic growth," Journal of Urban Economics, Elsevier, vol. 122(C).
    31. Bai, Chong-En & Qian, Yingyi, 2010. "Infrastructure development in China: The cases of electricity, highways, and railways," Journal of Comparative Economics, Elsevier, vol. 38(1), pages 34-51, March.
    32. Wang, Longjian & Zhang, Shuichao & Szűcs, Gábor & Wang, Yonggang, 2024. "Identifying the critical nodes in multi-modal transportation network with a traffic demand-based computational method," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    33. Matsumoto, Hidenobu, 2004. "International urban systems and air passenger and cargo flows: some calculations," Journal of Air Transport Management, Elsevier, vol. 10(4), pages 239-247.
    34. Martijn J. Burger & Bert van der Knaap & Ronald S. Wall, 2014. "Polycentricity and the Multiplexity of Urban Networks," European Planning Studies, Taylor & Francis Journals, vol. 22(4), pages 816-840, April.
    35. Kailthya, Subham & Kambhampati, Uma, 2022. "Road to productivity: Effects of roads on total factor productivity in Indian manufacturing," Journal of Comparative Economics, Elsevier, vol. 50(1), pages 174-195.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cascetta, Ennio & Cartenì, Armando & Henke, Ilaria & Pagliara, Francesca, 2020. "Economic growth, transport accessibility and regional equity impacts of high-speed railways in Italy: ten years ex post evaluation and future perspectives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 412-428.
    2. Wu, Mingqin & Yu, Linhui & Zhang, Junsen, 2023. "Road expansion, allocative efficiency, and pro-competitive effect of transport infrastructure: Evidence from China," Journal of Development Economics, Elsevier, vol. 162(C).
    3. Yang, Xiaolan & Wang, Rui & Guo, Dongmei & Sun, Weizeng, 2020. "The reconfiguration effect of China's high-speed railway on intercity connection ——A study based on media attention index," Transport Policy, Elsevier, vol. 95(C), pages 47-56.
    4. Yan, Linnan & Tu, Menger & Chagas, André L.S. & Tai, Lufeng, 2022. "The impact of high-speed railway on labor spatial misallocation—Based on spatial difference-in-differences analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 82-97.
    5. Linnan Yan & Menger Tu & Andre Luis Squarize Chagas & Lufeng Tai, 2022. "The Impact of High-Speed Rail on Labor Spatial Misallocation-Based on Spatial Difference-in-Differences Analysis," Working Papers, Department of Economics 2022_19, University of São Paulo (FEA-USP).
    6. Stef Proost & Jacques-François Thisse, 2019. "What Can Be Learned from Spatial Economics?," Journal of Economic Literature, American Economic Association, vol. 57(3), pages 575-643, September.
    7. Pi, Yabin & Wang, Yanzhen, 2025. "Transportation infrastructure, comparative advantage, and regional specialization: Evidence from China’s high-speed railway network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 191(C).
    8. Xie, Lin & Wang, Shaozhuang & Yan, Lingxiao, 2024. "Distributional effects of expressway access on rural entrepreneurial activities in China," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    9. Wu, Guiying Laura & Feng, Qu & Wang, Zhifeng, 2021. "A structural estimation of the return to infrastructure investment in China," Journal of Development Economics, Elsevier, vol. 152(C).
    10. Wu, Bingyu & Levinson, David M., 2024. "A multi-modal analysis of the effect of transport on population and productivity in China," Journal of Transport Geography, Elsevier, vol. 116(C).
    11. Liu, Mengsha & Jiang, Yan & Wei, Xiaokun & Ruan, Qingsong & Lv, Dayong, 2023. "Effect of high-speed rail on entrepreneurial activities: Evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    12. Bo Yang & Yaping Yang & Yangxiaoyue Liu & Xiafang Yue, 2022. "Spatial Structure Evolution and Economic Benefits of Rapidly Expanding the High-Speed Rail Network in Developing Regions: A Case Study in Western China," Sustainability, MDPI, vol. 14(23), pages 1-20, November.
    13. Pablo D. Fajgelbaum & Edouard Schaal, 2020. "Optimal Transport Networks in Spatial Equilibrium," Econometrica, Econometric Society, vol. 88(4), pages 1411-1452, July.
    14. Emanuela Marrocu & Raffaele Paci & Marco Pontis, 2012. "Intangible capital and firms' productivity," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 21(2), pages 377-402, April.
    15. Yoshifumi Konishi & Akari Ono, 2024. "Do Winners Win More from Transport Megaprojects? Evidence from the Great Seto Bridge in Japan," Keio-IES Discussion Paper Series 2024-018, Institute for Economics Studies, Keio University.
    16. Yang Yang, 2018. "Transport Infrastructure, City Productivity Growth and Sectoral Reallocation: Evidence from China," IMF Working Papers 2018/276, International Monetary Fund.
    17. Olof Ejermo & Katrin Hussinger & Basheer Kalash & Torben Schubert, 2022. "Innovation in Malmö after the Öresund Bridge," Journal of Regional Science, Wiley Blackwell, vol. 62(1), pages 5-20, January.
    18. Dai, Lu & Zhang, Jiajun & Luo, Shougui, 2022. "Effective R&D capital and total factor productivity: Evidence using spatial panel data models," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    19. Hiau Looi Kee & Enze Xie & Xu,Mingzhi, 2024. "Firm Linkages and Domestic Value Added in Exports : Moving up the Global Value Chains with High-Speed Railways," Policy Research Working Paper Series 10985, The World Bank.
    20. Chen, Fanglin & Hao, Xinyue & Chen, Zhongfei, 2021. "Can high-speed rail improve health and alleviate health inequality? Evidence from China," Transport Policy, Elsevier, vol. 114(C), pages 266-279.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:162:y:2025:i:c:p:477-492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.