IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v138y2020icp299-321.html
   My bibliography  Save this article

Does China’s high-speed rail development lead to regional disparities? A network perspective

Author

Listed:
  • Liu, Shuli
  • Wan, Yulai
  • Zhang, Anming

Abstract

This research examines whether cities are getting more equally accessible and connected via high-speed rail (HSR) in China over the period from 2010 to 2015. Existing studies mainly use network centralities to describe the spatial pattern of HSR network without measuring the spatial disparity of these centralities, and most of them rely on the infrastructure network and thus fail to incorporate HSR service quality in the centrality measures. Using HSR timetable data, we incorporate both scheduled travel time and daily frequency of each origin-destination city pair into three centrality measures and further quantify their inequalities using Theil’s T index. We find that as the HSR network expands, cities appear to be more equal in terms of accessibility, but their disparities in connectivity and transitivity depend on the dimensions of comparison. In general, although the difference between economic regions or between megalopolises has reduced, small/medium-sized cities not belonging to any major city cluster are further lagged behind in HSR development. The difference between core and non-core cities in the same megalopolises has decreased despite that non-core cities are increasingly relying on core cities to access other regions.

Suggested Citation

  • Liu, Shuli & Wan, Yulai & Zhang, Anming, 2020. "Does China’s high-speed rail development lead to regional disparities? A network perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 299-321.
  • Handle: RePEc:eee:transa:v:138:y:2020:i:c:p:299-321
    DOI: 10.1016/j.tra.2020.06.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856420306297
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2020.06.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takebayashi, Mikio, 2015. "Multiple hub network and high-speed railway: Connectivity, gateway, and airport leakage," Transportation Research Part A: Policy and Practice, Elsevier, vol. 79(C), pages 55-64.
    2. Moshe Givoni & Frédéric Dobruszkes, 2013. "A Review of Ex-Post Evidence for Mode Substitution and Induced Demand Following the Introduction of High-Speed Rail," ULB Institutional Repository 2013/152140, ULB -- Universite Libre de Bruxelles.
    3. Chen, Cheng & D'Alfonso, Tiziana & Guo, Huanxiu & Jiang, Changmin, 2018. "Graph theoretical analysis of the Chinese high-speed rail network over time," Research in Transportation Economics, Elsevier, vol. 72(C), pages 3-14.
    4. Wang, Kun & Xia, Wenyi & Zhang, Anming, 2017. "Should China further expand its high-speed rail network? Consider the low-cost carrier factor," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 105-120.
    5. Vickerman, Roger, 2018. "Can high-speed rail have a transformative effect on the economy?," Transport Policy, Elsevier, vol. 62(C), pages 31-37.
    6. Zhang, Anming & Wan, Yulai & Yang, Hangjun, 2019. "Impacts of high-speed rail on airlines, airports and regional economies: A survey of recent research," Transport Policy, Elsevier, vol. 81(C), pages 1-19.
    7. Yang, Haoran & Dobruszkes, Frédéric & Wang, Jiaoe & Dijst, Martin & Witte, Patrick, 2018. "Comparing China's urban systems in high-speed railway and airline networks," Journal of Transport Geography, Elsevier, vol. 68(C), pages 233-244.
    8. Jiao, Jingjuan & Wang, Jiaoe & Jin, Fengjun, 2017. "Impacts of high-speed rail lines on the city network in China," Journal of Transport Geography, Elsevier, vol. 60(C), pages 257-266.
    9. Filipe Campante & David Yanagizawa-Drott, 2018. "Long-Range Growth: Economic Development in the Global Network of Air Links," The Quarterly Journal of Economics, Oxford University Press, vol. 133(3), pages 1395-1458.
    10. Jia, Shanming & Zhou, Chunyu & Qin, Chenglin, 2017. "No difference in effect of high-speed rail on regional economic growth based on match effect perspective?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 144-157.
    11. Kim, Hyojin & Sultana, Selima, 2015. "The impacts of high-speed rail extensions on accessibility and spatial equity changes in South Korea from 2004 to 2018," Journal of Transport Geography, Elsevier, vol. 45(C), pages 48-61.
    12. Zhang, Yahua & Zhang, Anming & Zhu, Zhenran & Wang, Kun, 2017. "Connectivity at Chinese airports: The evolution and drivers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 490-508.
    13. Komei Sasaki & Tadahiro Ohashi & Asao Ando, 1997. "High-speed rail transit impact on regional systems: does the Shinkansen contribute to dispersion?," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 31(1), pages 77-98.
    14. Mishra, Sabyasachee & Welch, Timothy F. & Jha, Manoj K., 2012. "Performance indicators for public transit connectivity in multi-modal transportation networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(7), pages 1066-1085.
    15. Chen, Zhenhua & Haynes, Kingsley E., 2017. "Impact of high-speed rail on regional economic disparity in China," Journal of Transport Geography, Elsevier, vol. 65(C), pages 80-91.
    16. Cheung, Tommy K.Y. & Wong, Collin W.H. & Zhang, Anming, 2020. "The evolution of aviation network: Global airport connectivity index 2006–2016," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    17. Anastasia Loukaitou-Sideris & Harrison Higgins & Matthew Piven & Wenbin Wei, 2013. "Tracks to Change or Mixed Signals? A Review of the Anglo-Saxon Literature on the Economic and Spatial Impacts of High-Speed Rail," Transport Reviews, Taylor & Francis Journals, vol. 33(6), pages 617-633, November.
    18. Haoran Yang & Martin Dijst & Patrick Witte & Hans van Ginkel & Jiao’e Wang, 2019. "Comparing passenger flow and time schedule data to analyse High-Speed Railways and urban networks in China," Urban Studies, Urban Studies Journal Limited, vol. 56(6), pages 1267-1287, May.
    19. Martínez Sánchez-Mateos, Héctor S. & Givoni, Moshe, 2012. "The accessibility impact of a new High-Speed Rail line in the UK – a preliminary analysis of winners and losers," Journal of Transport Geography, Elsevier, vol. 25(C), pages 105-114.
    20. Kevin Credit, 2019. "Transitive properties: a spatial econometric analysis of new business creation around transit," Spatial Economic Analysis, Taylor & Francis Journals, vol. 14(1), pages 26-52, January.
    21. Yu Qin, 2017. "‘No county left behind?’ The distributional impact of high-speed rail upgrades in China," Journal of Economic Geography, Oxford University Press, vol. 17(3), pages 489-520.
    22. Fujita,Masahisa & Thisse,Jacques-François, 2013. "Economics of Agglomeration," Cambridge Books, Cambridge University Press, number 9781107001411, October.
    23. Xu, Wangtu (Ato) & Zhou, Jiangping & Qiu, Guo, 2018. "China's high-speed rail network construction and planning over time: a network analysis," Journal of Transport Geography, Elsevier, vol. 70(C), pages 40-54.
    24. Haoran Yang & Frédéric Dobruszkes & Jiaoe Wang & Martin Dijst & Patrick Wiik, 2018. "Comparing China's urban systems in high-speed railway and airline networks," ULB Institutional Repository 2013/269363, ULB -- Universite Libre de Bruxelles.
    25. Li, Tao & Rong, Lili & Yan, Kesheng, 2019. "Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 55-70.
    26. Zhu, Zhenran & Zhang, Anming & Zhang, Yahua, 2018. "Connectivity of intercity passenger transportation in China: A multi-modal and network approach," Journal of Transport Geography, Elsevier, vol. 71(C), pages 263-276.
    27. Li, Tao & Rong, Lili, 2020. "A comprehensive method for the robustness assessment of high-speed rail network with operation data: A case in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 666-681.
    28. Amparo Moyano & Frédéric Dobruszkes, 2017. "Mind the services! High-speed rail cities bypassed by high-speed trains," ULB Institutional Repository 2013/261983, ULB -- Universite Libre de Bruxelles.
    29. Marchiori, Massimo & Latora, Vito, 2000. "Harmony in the small-world," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 285(3), pages 539-546.
    30. Moshe Givoni & Frédéric Dobruszkes, 2013. "A Review of Ex-Post Evidence for Mode Substitution and Induced Demand Following the Introduction of High-Speed Rail," Transport Reviews, Taylor & Francis Journals, vol. 33(6), pages 720-742, November.
    31. Shiwei Lu & Yaping Huang & Zhiyuan Zhao & Xiping Yang, 2018. "Exploring the Hierarchical Structure of China’s Railway Network from 2008 to 2017," Sustainability, MDPI, vol. 10(9), pages 1-15, September.
    32. Wong, W.H. & Cheung, Tommy & Zhang, Anming & Wang, Yue, 2019. "Is spatial dispersal the dominant trend in air transport development? A global analysis for 2006–2015," Journal of Air Transport Management, Elsevier, vol. 74(C), pages 1-12.
    33. Wang, Lei, 2018. "High-speed rail services development and regional accessibility restructuring in megaregions: A case of the Yangtze River Delta, China," Transport Policy, Elsevier, vol. 72(C), pages 34-44.
    34. Liu, Shuli & Wan, Yulai & Ha, Hun-Koo & Yoshida, Yuichiro & Zhang, Anming, 2019. "Impact of high-speed rail network development on airport traffic and traffic distribution: Evidence from China and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 115-135.
    35. Diao, Mi, 2018. "Does growth follow the rail? The potential impact of high-speed rail on the economic geography of China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 279-290.
    36. (Ato) Xu, Wangtu & Zhou, Jiangping & Yang, Linchuan & Li, Ling, 2018. "The implications of high-speed rail for Chinese cities: Connectivity and accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 308-326.
    37. Givoni, Moshe & Banister, David, 2012. "Speed: the less important element of the High-Speed Train," Journal of Transport Geography, Elsevier, vol. 22(C), pages 306-307.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yongpei & Guan, Zhongyu & Zhang, Qian, 2023. "Railway opening and carbon emissions in distressed areas: Evidence from China's state-level poverty-stricken counties," Transport Policy, Elsevier, vol. 130(C), pages 55-67.
    2. Liu, Jingyang & Yang, Haoran, 2023. "Income allocation and distribution along with high-speed rail development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    3. Liu, Xueli & Jiang, Chunxia & Wang, Feng & Yao, Shujie, 2021. "The impact of high-speed railway on urban housing prices in China: A network accessibility perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 84-99.
    4. Li, Xiang & Cheng, Zhonghua, 2022. "Does high-speed rail improve urban carbon emission efficiency in China?," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    5. Li, Hao & Guo, Huanxiu, 2021. "Spatial spillovers of pollution via high-speed rail network in China," Transport Policy, Elsevier, vol. 111(C), pages 138-152.
    6. Li, Tao & Rong, Lili, 2022. "Spatiotemporally complementary effect of high-speed rail network on robustness of aviation network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 95-114.
    7. Wu, Yizhong & Lee, Chien-Chiang & Lee, Chi-Chuan & Peng, Diyun, 2022. "Geographic proximity and corporate investment efficiency: Evidence from high-speed rail construction in China," Journal of Banking & Finance, Elsevier, vol. 140(C).
    8. Li, Tao & Rong, Lili & Zhang, Anming, 2021. "Assessing regional risk of COVID-19 infection from Wuhan via high-speed rail," Transport Policy, Elsevier, vol. 106(C), pages 226-238.
    9. Chen, Fanglin & Hao, Xinyue & Chen, Zhongfei, 2021. "Can high-speed rail improve health and alleviate health inequality? Evidence from China," Transport Policy, Elsevier, vol. 114(C), pages 266-279.
    10. Yuan, Liang & Fan, Xiaoming, 2023. "As a Chinese saying goes, ‘To get rich, first pave the way’: The opening of high-speed rail and automobile consumption in China," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
    11. Feng, Xiao & He, Shiwei & Li, Guangye & Chi, Jushang, 2021. "Transfer network of high-speed rail and aviation: Structure and critical components," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    12. Sun, Xinyu & Yan, Sen & Liu, Tao & Wang, Jiayin, 2023. "The impact of high-speed rail on urban economy: Synergy with urban agglomeration policy," Transport Policy, Elsevier, vol. 130(C), pages 141-154.
    13. Liwen Liu & Ming Zhang, 2021. "The Impacts of High-Speed Rail on Regional Accessibility and Spatial Development—Updated Evidence from China’s Mid-Yangtze River City-Cluster Region," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    14. Bhatt, Ayushman & Kato, Hironori, 2021. "High-speed rails and knowledge productivity: A global perspective," Transport Policy, Elsevier, vol. 101(C), pages 174-186.
    15. Ren, Xiaohang & Zeng, Gudian & Dong, Kangyin & Wang, Kun, 2023. "How does high-speed rail affect tourism development? The case of the Sichuan-Chongqing Economic Circle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    16. Guojie Ma & Jinxing Hu & Riquan Zhang, 2023. "Spatial-Temporal Distribution and Coupling Relationship of High-Speed Railway and Economic Networks in Metropolitan Areas of China," Land, MDPI, vol. 12(6), pages 1-23, June.
    17. Di Matteo, Dante & Cardinale, Bernardo, 2023. "Impact of high-speed rail on income inequalities in Italy," Journal of Transport Geography, Elsevier, vol. 111(C).
    18. Huang, Yuxia & Jiang, Chenxin & Wang, Kun & Xiao, Yibin & Zhang, Anming, 2021. "Public-private partnership in high-speed rail financing: Case of uncertain regional economic spillovers in China," Transport Policy, Elsevier, vol. 106(C), pages 64-75.
    19. Wang, Lisha & Miwa, Tomio & Jiang, Meilan & Morikawa, Takayuki, 2021. "Heterogeneous residential distribution changes and spillover effects by railway projects: The case study of Nagoya, Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 145-163.
    20. Liu, Shuli & Wan, Yulai & Zhang, Anming, 2021. "Does high-speed rail development affect airport productivity? Evidence from China and Japan," Transport Policy, Elsevier, vol. 110(C), pages 1-15.
    21. Ivan A. Antipin & Natalya Yu. Vlasova & Olga Yu. Ivanova, 2020. "Strategic priorities for managing spatial inequalities in the socio-economic development of the Russian regions," Upravlenets, Ural State University of Economics, vol. 11(6), pages 29-43, December.
    22. Liu, Mengsha & Jiang, Yan & Wei, Xiaokun & Ruan, Qingsong & Lv, Dayong, 2023. "Effect of high-speed rail on entrepreneurial activities: Evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yan & Zong, Huiming, 2020. "The spatial distribution and determinants of China’s high-speed train services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 56-70.
    2. Zhang, Anming & Wan, Yulai & Yang, Hangjun, 2019. "Impacts of high-speed rail on airlines, airports and regional economies: A survey of recent research," Transport Policy, Elsevier, vol. 81(C), pages 1-19.
    3. Mohsen Momenitabar & Raj Bridgelall & Zhila Dehdari Ebrahimi & Mohammad Arani, 2021. "Literature Review of Socioeconomic and Environmental Impacts of High-Speed Rail in the World," Sustainability, MDPI, vol. 13(21), pages 1-27, November.
    4. Huang, Yan & Zong, Huiming, 2022. "The intercity railway connections in China: A comparative analysis of high-speed train and conventional train services," Transport Policy, Elsevier, vol. 120(C), pages 89-103.
    5. Wang, Lei, 2018. "High-speed rail services development and regional accessibility restructuring in megaregions: A case of the Yangtze River Delta, China," Transport Policy, Elsevier, vol. 72(C), pages 34-44.
    6. Mohsen Momenitabar & Zhila Dehdari Ebrahimi & Mohammad Arani, 2020. "A Systematic and Analytical Review of the Socioeconomic and Environmental Impact of the Deployed High-Speed Rail (HSR) Systems on the World," Papers 2003.04452, arXiv.org, revised Mar 2020.
    7. Wang, Kun & Jiang, Changmin & Ng, Adolf K.Y. & Zhu, Zhenran, 2020. "Air and rail connectivity patterns of major city clusters in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 35-53.
    8. Zhang, Fangni & Yang, Zhiwei & Jiao, Jingjuan & Liu, Wei & Wu, Wenjie, 2020. "The effects of high-speed rail development on regional equity in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 180-202.
    9. Yu, Danlin & Murakami, Daisuke & Zhang, Yaojun & Wu, Xiwei & Li, Ding & Wang, Xiaoxi & Li, Guangdong, 2020. "Investigating high-speed rail construction's support to county level regional development in China: An eigenvector based spatial filtering panel data analysis," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 21-37.
    10. Yang, Zhiwei & Li, Can & Jiao, Jingjuan & Liu, Wei & Zhang, Fangni, 2020. "On the joint impact of high-speed rail and megalopolis policy on regional economic growth in China," Transport Policy, Elsevier, vol. 99(C), pages 20-30.
    11. Jiao, Jingjuan & Wang, Jiaoe & Zhang, Fangni & Jin, Fengjun & Liu, Wei, 2020. "Roles of accessibility, connectivity and spatial interdependence in realizing the economic impact of high-speed rail: Evidence from China," Transport Policy, Elsevier, vol. 91(C), pages 1-15.
    12. Weichen Liu & Jiaying Guo & Wei Wu & Youhui Cao, 2022. "The evolution of regional spatial structure influenced by passenger rail service: A case study of the Yangtze River Delta," Growth and Change, Wiley Blackwell, vol. 53(2), pages 651-679, June.
    13. Sun, Xinyu & Yan, Sen & Liu, Tao & Wang, Jiayin, 2023. "The impact of high-speed rail on urban economy: Synergy with urban agglomeration policy," Transport Policy, Elsevier, vol. 130(C), pages 141-154.
    14. Li, Tao & Rong, Lili, 2021. "Impacts of service feature on vulnerability analysis of high-speed rail network," Transport Policy, Elsevier, vol. 110(C), pages 238-253.
    15. Li, Tao & Rong, Lili & Zhang, Anming, 2021. "Assessing regional risk of COVID-19 infection from Wuhan via high-speed rail," Transport Policy, Elsevier, vol. 106(C), pages 226-238.
    16. Guo, Ying & Cao, Lingyan & Song, Ying & Wang, Yan & Li, Yongkui, 2022. "Understanding the formation of City-HSR network: A case study of Yangtze River Delta, China," Transport Policy, Elsevier, vol. 116(C), pages 315-326.
    17. Liu, Shuli & Wan, Yulai & Ha, Hun-Koo & Yoshida, Yuichiro & Zhang, Anming, 2019. "Impact of high-speed rail network development on airport traffic and traffic distribution: Evidence from China and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 115-135.
    18. Wu, Rong & Li, Yingcheng & Wang, Shaojian, 2022. "Will the construction of high-speed rail accelerate urban land expansion? Evidences from Chinese cities," Land Use Policy, Elsevier, vol. 114(C).
    19. Jin, Mengjie & Lin, Kun-Chin & Shi, Wenming & Lee, Paul T.W. & Li, Kevin X., 2020. "Impacts of high-speed railways on economic growth and disparity in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 158-171.
    20. Tanaka, Koichi, 2023. "Impacts of the opening of the maglev railway on daily accessibility in Japan: A comparative analysis with that of the Shinkansen," Journal of Transport Geography, Elsevier, vol. 106(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:138:y:2020:i:c:p:299-321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.