IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v116y2018icp308-326.html
   My bibliography  Save this article

The implications of high-speed rail for Chinese cities: Connectivity and accessibility

Author

Listed:
  • (Ato) Xu, Wangtu
  • Zhou, Jiangping
  • Yang, Linchuan
  • Li, Ling

Abstract

Based on China’s latest national railway network planning proposal, the connectivity and accessibility indices of China’s high-speed railway network (CHSRN) in different time periods are computed to evaluate the implications of high-speed rail (HSR) for Chinese cities. An overall index for measuring the connectivity-accessibility of cities on the HSR network is proposed based on three indicators: (a) the Beta index, to reflect the connectivity of the HSR, (b) the number of reachable counties by HSR within the 500-km domain of a city, to reflect the location-based accessibility of the HSR, and (c) the population of the reachable places by HSR within the 500-km domain of a city, to reflect the potential-based accessibility of the HSR. Finally, the differences in the normalized connectivity-accessibility levels of different categories of cities are qualified to measure the impact of China’s future national HSR network on the potential development of cities. It is found that “Mid-to-Long-Term Railway Network Plan (Revised in 2016)”, if fully realized, would profoundly change the HSR connectivity/accessibility of different cities. Most notably, cities in the Yangtze River Delta would suffer the most whereas cities of the central and western regions would gain the most. This could potentially contribute to, or bring about new changes in, the socioeconomic landscapes in China. The methodological contribution of this paper is twofold. Firstly, an overall index to evaluate the comprehensive connectivity and accessibility levels of the HSR network is designed. Secondly, this paper investigates how to qualify the impact of the future HSR network on different tiers of cities in different time periods according to the change of the overall connectivity/accessibility index.

Suggested Citation

  • (Ato) Xu, Wangtu & Zhou, Jiangping & Yang, Linchuan & Li, Ling, 2018. "The implications of high-speed rail for Chinese cities: Connectivity and accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 308-326.
  • Handle: RePEc:eee:transa:v:116:y:2018:i:c:p:308-326
    DOI: 10.1016/j.tra.2018.06.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856418301435
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2018.06.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dobruszkes, Frédéric & Dehon, Catherine & Givoni, Moshe, 2014. "Does European high-speed rail affect the current level of air services? An EU-wide analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 461-475.
    2. Hadas, Yuval, 2013. "Assessing public transport systems connectivity based on Google Transit data," Journal of Transport Geography, Elsevier, vol. 33(C), pages 105-116.
    3. Chen, Zhenhua & Xue, Junbo & Rose, Adam Z. & Haynes, Kingsley E., 2016. "The impact of high-speed rail investment on economic and environmental change in China: A dynamic CGE analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 232-245.
    4. Wang, Kun & Xia, Wenyi & Zhang, Anming, 2017. "Should China further expand its high-speed rail network? Consider the low-cost carrier factor," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 105-120.
    5. Moyano, Amparo & Martínez, Héctor S. & Coronado, José M., 2018. "From network to services: A comparative accessibility analysis of the Spanish high-speed rail system," Transport Policy, Elsevier, vol. 63(C), pages 51-60.
    6. Moniruzzaman, Md & Páez, Antonio, 2012. "Accessibility to transit, by transit, and mode share: application of a logistic model with spatial filters," Journal of Transport Geography, Elsevier, vol. 24(C), pages 198-205.
    7. Wang, Lvhua & Liu, Yongxue & Sun, Chao & Liu, Yahui, 2016. "Accessibility impact of the present and future high-speed rail network: A case study of Jiangsu Province, China," Journal of Transport Geography, Elsevier, vol. 54(C), pages 161-172.
    8. Levinson, David M., 2012. "Accessibility impacts of high-speed rail," Journal of Transport Geography, Elsevier, vol. 22(C), pages 288-291.
    9. Shen, Yu & de Abreu e Silva, João & Martínez, Luis Miguel, 2014. "Assessing High-Speed Rail’s impacts on land cover change in large urban areas based on spatial mixed logit methods: a case study of Madrid Atocha railway station from 1990 to 2006," Journal of Transport Geography, Elsevier, vol. 41(C), pages 184-196.
    10. Brown, Stephen J & Goetzmann, William N, 1995. "Performance Persistence," Journal of Finance, American Finance Association, vol. 50(2), pages 679-698, June.
    11. Lu, Shyi-Min, 2016. "A low-carbon transport infrastructure in Taiwan based on the implementation of energy-saving measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 499-509.
    12. Albalate, Daniel & Fageda, Xavier, 2016. "High speed rail and tourism: Empirical evidence from Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 174-185.
    13. Graziano Abrate & Giampaolo Viglia & Javier Sanchez García & Santiago Forgas-Coll, 2016. "Price Competition within and between Airlines and High-Speed Trains: The Case of the Milan—Rome Route," Tourism Economics, , vol. 22(2), pages 311-323, April.
    14. Jia, Shanming & Zhou, Chunyu & Qin, Chenglin, 2017. "No difference in effect of high-speed rail on regional economic growth based on match effect perspective?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 144-157.
    15. Chen, Zhenhua & Haynes, Kingsley E., 2015. "Impact of high speed rail on housing values: an observation from the Beijing–Shanghai line," Journal of Transport Geography, Elsevier, vol. 43(C), pages 91-100.
    16. Yang, Hangjun & Zhang, Anming, 2012. "Effects of high-speed rail and air transport competition on prices, profits and welfare," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1322-1333.
    17. Xu, Xiaozhan, 2004. "A note on the subjective and objective integrated approach to determine attribute weights," European Journal of Operational Research, Elsevier, vol. 156(2), pages 530-532, July.
    18. Takebayashi, Mikio, 2016. "How could the collaboration between airport and high speed rail affect the market?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 277-286.
    19. Coronado, José María & Garmendia, Maddi & Moyano, Amparo & Ureña, José María, 2013. "Assessing Spanish HSR network utility for same-day tourism," Recherche Transports Sécurité, Editions NecPlus, vol. 2013(03), pages 161-175, September.
    20. Mishra, Sabyasachee & Welch, Timothy F. & Jha, Manoj K., 2012. "Performance indicators for public transit connectivity in multi-modal transportation networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(7), pages 1066-1085.
    21. Chai, Jian & Zhou, Youhong & Zhou, Xiaoyang & Wang, Shouyang & Zhang, Zhe George & Liu, Zenghui, 2018. "Analysis on shock effect of China’s high-speed railway on aviation transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 108(C), pages 35-44.
    22. Straatemeier, Thomas, 2008. "How to plan for regional accessibility," Transport Policy, Elsevier, vol. 15(2), pages 127-137, March.
    23. Kaplan, Sigal & Popoks, Dmitrijs & Prato, Carlo Giacomo & Ceder, Avishai (Avi), 2014. "Using connectivity for measuring equity in transit provision," Journal of Transport Geography, Elsevier, vol. 37(C), pages 82-92.
    24. Cao, Jing & Liu, Xiaoyue Cathy & Wang, Yinhai & Li, Qingquan, 2013. "Accessibility impacts of China’s high-speed rail network," Journal of Transport Geography, Elsevier, vol. 28(C), pages 12-21.
    25. Carpenter, Jennifer N. & Lynch, Anthony W., 1999. "Survivorship bias and attrition effects in measures of performance persistence," Journal of Financial Economics, Elsevier, vol. 54(3), pages 337-374, December.
    26. Zhenhua Chen & Kingsley E. Haynes, 2015. "Impact of high-speed rail on international tourism demand in China," Applied Economics Letters, Taylor & Francis Journals, vol. 22(1), pages 57-60, January.
    27. Nassir, Neema & Hickman, Mark & Malekzadeh, Ali & Irannezhad, Elnaz, 2016. "A utility-based travel impedance measure for public transit network accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 26-39.
    28. Guerra, Erick, 2014. "Mexico City's suburban land use and transit connection: The effects of the Line B Metro expansion," Transport Policy, Elsevier, vol. 32(C), pages 105-114.
    29. Zhang, Qiong & Yang, Hangjun & Wang, Qiang, 2017. "Impact of high-speed rail on China’s Big Three airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 98(C), pages 77-85.
    30. Wu, Jianhong & Nash, Chris & Wang, Dong, 2014. "Is high speed rail an appropriate solution to China’s rail capacity problems?," Journal of Transport Geography, Elsevier, vol. 40(C), pages 100-111.
    31. Martínez Sánchez-Mateos, Héctor S. & Givoni, Moshe, 2012. "The accessibility impact of a new High-Speed Rail line in the UK – a preliminary analysis of winners and losers," Journal of Transport Geography, Elsevier, vol. 25(C), pages 105-114.
    32. Shaw, Shih-Lung & Fang, Zhixiang & Lu, Shiwei & Tao, Ran, 2014. "Impacts of high speed rail on railroad network accessibility in China," Journal of Transport Geography, Elsevier, vol. 40(C), pages 112-122.
    33. Pagliara, Francesca & Mauriello, Filomena & Garofalo, Antonio, 2017. "Exploring the interdependences between High Speed Rail systems and tourism: Some evidence from Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 300-308.
    34. van Wee, Bert, 2016. "Accessible accessibility research challenges," Journal of Transport Geography, Elsevier, vol. 51(C), pages 9-16.
    35. Karou, Saleem & Hull, Angela, 2014. "Accessibility modelling: predicting the impact of planned transport infrastructure on accessibility patterns in Edinburgh, UK," Journal of Transport Geography, Elsevier, vol. 35(C), pages 1-11.
    36. Cheng, Yung-Hsiang & Chen, Ssu-Yun, 2015. "Perceived accessibility, mobility, and connectivity of public transportation systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 386-403.
    37. Blair, Neale & Hine, Julian & Bukhari, Syed Murtaza Asghar, 2013. "Analysing the impact of network change on transport disadvantage: a GIS-based case study of Belfast," Journal of Transport Geography, Elsevier, vol. 31(C), pages 192-200.
    38. Fu, Xiaowen & Zhang, Anming & Lei, Zheng, 2012. "Will China’s airline industry survive the entry of high-speed rail?," Research in Transportation Economics, Elsevier, vol. 35(1), pages 13-25.
    39. Brown, Stephen J, et al, 1992. "Survivorship Bias in Performance Studies," The Review of Financial Studies, Society for Financial Studies, vol. 5(4), pages 553-580.
    40. Zhao, Jian & Zhao, Yunyi & Li, Ying, 2015. "The variation in the value of travel-time savings and the dilemma of high-speed rail in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 130-140.
    41. David Andersson & Oliver Shyr & Angel Lee, 2012. "The successes and failures of a key transportation link: accessibility effects of Taiwan’s high-speed rail," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 48(1), pages 203-223, February.
    42. Saghapour, Tayebeh & Moridpour, Sara & Thompson, Russell G., 2016. "Public transport accessibility in metropolitan areas: A new approach incorporating population density," Journal of Transport Geography, Elsevier, vol. 54(C), pages 273-285.
    43. Suau-Sanchez, Pere & Burghouwt, Guillaume, 2012. "Connectivity levels and the competitive position of Spanish airports and Iberia’s network rationalization strategy, 2001–2007," Journal of Air Transport Management, Elsevier, vol. 18(1), pages 47-53.
    44. Cartenì, Armando & Pariota, Luigi & Henke, Ilaria, 2017. "Hedonic value of high-speed rail services: Quantitative analysis of the students’ domestic tourist attractiveness of the main Italian cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 348-365.
    45. Matisziw, T.C. & Grubesic, T.H., 2010. "Evaluating locational accessibility to the US air transportation system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 710-722, November.
    46. Jiao, Jingjuan & Wang, Jiaoe & Jin, Fengjun & Dunford, Michael, 2014. "Impacts on accessibility of China’s present and future HSR network," Journal of Transport Geography, Elsevier, vol. 40(C), pages 123-132.
    47. Cui, JianXun & Liu, Feng & Janssens, Davy & An, Shi & Wets, Geert & Cools, Mario, 2016. "Detecting urban road network accessibility problems using taxi GPS data," Journal of Transport Geography, Elsevier, vol. 51(C), pages 147-157.
    48. Tong, Lu & Zhou, Xuesong & Miller, Harvey J., 2015. "Transportation network design for maximizing space–time accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 555-576.
    49. Páez, Antonio & Scott, Darren M. & Morency, Catherine, 2012. "Measuring accessibility: positive and normative implementations of various accessibility indicators," Journal of Transport Geography, Elsevier, vol. 25(C), pages 141-153.
    50. Fransen, Koos & Neutens, Tijs & Farber, Steven & De Maeyer, Philippe & Deruyter, Greet & Witlox, Frank, 2015. "Identifying public transport gaps using time-dependent accessibility levels," Journal of Transport Geography, Elsevier, vol. 48(C), pages 176-187.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. (Ato) Xu, Wangtu & Huang, Ying, 2019. "The correlation between HSR construction and economic development – Empirical study of Chinese cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 24-36.
    2. Sharma, Ishant & Mishra, Sabyasachee & Golias, Mihalis M. & Welch, Timothy F. & Cherry, Christopher R., 2020. "Equity of transit connectivity in Tennessee cities," Journal of Transport Geography, Elsevier, vol. 86(C).
    3. Yuyang Zhou & Minhe Zhao & Songtao Tang & William H. K. Lam & Anthony Chen & N. N. Sze & Yanyan Chen, 2020. "Assessing the Relationship between Access Travel Time Estimation and the Accessibility to High Speed Railway Station by Different Travel Modes," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    4. Cascetta, Ennio & Cartenì, Armando & Henke, Ilaria & Pagliara, Francesca, 2020. "Economic growth, transport accessibility and regional equity impacts of high-speed railways in Italy: ten years ex post evaluation and future perspectives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 412-428.
    5. Mohsen Momenitabar & Zhila Dehdari Ebrahimi & Mohammad Arani, 2020. "A Systematic and Analytical Review of the Socioeconomic and Environmental Impact of the Deployed High-Speed Rail (HSR) Systems on the World," Papers 2003.04452, arXiv.org, revised Mar 2020.
    6. Zhang, Anming & Wan, Yulai & Yang, Hangjun, 2019. "Impacts of high-speed rail on airlines, airports and regional economies: A survey of recent research," Transport Policy, Elsevier, vol. 81(C), pages 1-19.
    7. Liu, Liwen & Zhang, Ming, 2018. "High-speed rail impacts on travel times, accessibility, and economic productivity: A benchmarking analysis in city-cluster regions of China," Journal of Transport Geography, Elsevier, vol. 73(C), pages 25-40.
    8. Mohsen Momenitabar & Raj Bridgelall & Zhila Dehdari Ebrahimi & Mohammad Arani, 2021. "Literature Review of Socioeconomic and Environmental Impacts of High-Speed Rail in the World," Sustainability, MDPI, vol. 13(21), pages 1-27, November.
    9. Zhao, Yun & Yu, Hongbo, 2018. "A door-to-door travel time approach for evaluating modal competition of intercity travel: A focus on the proposed Dallas-Houston HSR route," Journal of Transport Geography, Elsevier, vol. 72(C), pages 13-22.
    10. Sun, Xiaoqian & Wandelt, Sebastian & Zhang, Anming, 2021. "Comparative accessibility of Chinese airports and high-speed railway stations: A high-resolution, yet scalable framework based on open data," Journal of Air Transport Management, Elsevier, vol. 92(C).
    11. Weichen Liu & Jiaying Guo & Wei Wu & Youhui Cao, 2022. "The evolution of regional spatial structure influenced by passenger rail service: A case study of the Yangtze River Delta," Growth and Change, Wiley Blackwell, vol. 53(2), pages 651-679, June.
    12. Henke, Ilaria & Moyano, Amparo & Pagliara, Francesca, 2023. "Influence of high-speed rail on the decentralisation of events from big metropolitan areas to smaller intermediate cities," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    13. Xiaomin Wang & Wenxin Zhang, 2019. "Efficiency and Spatial Equity Impacts of High-Speed Rail on the Central Plains Economic Region of China," Sustainability, MDPI, vol. 11(9), pages 1-18, May.
    14. Lin, Jen-Jia & Xie, Ze-Xing, 2020. "The associations of newly launched high-speed rail stations with industrial gentrification," Journal of Transport Geography, Elsevier, vol. 83(C).
    15. Cheng, Junmei & Chen, Zhenhua, 2021. "Impact of high-speed rail on the operational capacity of conventional rail in China," Transport Policy, Elsevier, vol. 110(C), pages 354-367.
    16. Wang, Lei, 2018. "High-speed rail services development and regional accessibility restructuring in megaregions: A case of the Yangtze River Delta, China," Transport Policy, Elsevier, vol. 72(C), pages 34-44.
    17. Zhang, Hui & Cui, Houdun & Wang, Wei & Song, Wenbo, 2020. "Properties of Chinese railway network: Multilayer structures based on timetable data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    18. Liu, Shuli & Wan, Yulai & Ha, Hun-Koo & Yoshida, Yuichiro & Zhang, Anming, 2019. "Impact of high-speed rail network development on airport traffic and traffic distribution: Evidence from China and Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 115-135.
    19. Weckström, Christoffer & Kujala, Rainer & Mladenović, Miloš N. & Saramäki, Jari, 2019. "Assessment of large-scale transitions in public transport networks using open timetable data: case of Helsinki metro extension," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    20. Huang, Yan & Zong, Huiming, 2020. "The spatial distribution and determinants of China’s high-speed train services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 56-70.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:116:y:2018:i:c:p:308-326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.