IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v51y2016icp147-157.html
   My bibliography  Save this article

Detecting urban road network accessibility problems using taxi GPS data

Author

Listed:
  • Cui, JianXun
  • Liu, Feng
  • Janssens, Davy
  • An, Shi
  • Wets, Geert
  • Cools, Mario

Abstract

Urban population growth and economic development have led to the creation of new communities, jobs and services at places where the existing road network might not cover or efficiently handle traffic. This generates isolated pockets of areas which are difficult to reach through the transport system. To address this accessibility problem, we have developed a novel approach to systematically examine the current urban land use and road network conditions as well as to identify poorly connected regions, using GPS data collected from taxis. This method is composed of four major steps. First, city-wide passenger travel demand patterns and travel times are modeled based on GPS trajectories. Upon this model, high density residential regions are then identified, and measures to assess accessibility of each of these places are developed. Next, the regions with the lowest level of accessibility among all the residential areas are detected, and finally the detected regions are further examined and specific transport situations are analyzed.

Suggested Citation

  • Cui, JianXun & Liu, Feng & Janssens, Davy & An, Shi & Wets, Geert & Cools, Mario, 2016. "Detecting urban road network accessibility problems using taxi GPS data," Journal of Transport Geography, Elsevier, vol. 51(C), pages 147-157.
  • Handle: RePEc:eee:jotrge:v:51:y:2016:i:c:p:147-157
    DOI: 10.1016/j.jtrangeo.2015.12.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692315002410
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2015.12.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jenelius, Erik & Koutsopoulos, Haris N., 2013. "Travel time estimation for urban road networks using low frequency probe vehicle data," Transportation Research Part B: Methodological, Elsevier, vol. 53(C), pages 64-81.
    2. Gwilliam, Kenneth, 2013. "Cities on the move – Ten years after," Research in Transportation Economics, Elsevier, vol. 40(1), pages 3-18.
    3. Neutens, Tijs & Delafontaine, Matthias & Scott, Darren M. & De Maeyer, Philippe, 2012. "An analysis of day-to-day variations in individual space–time accessibility," Journal of Transport Geography, Elsevier, vol. 23(C), pages 81-91.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuanxuan Xia & Kexin Lin & Yang Ding & Xianlei Dong & Huijun Sun & Beibei Hu, 2020. "Research on the Coupling Coordination Relationships between Urban Function Mixing Degree and Urbanization Development Level Based on Information Entropy," IJERPH, MDPI, vol. 18(1), pages 1-24, December.
    2. Sharma, Ishant & Mishra, Sabyasachee & Golias, Mihalis M. & Welch, Timothy F. & Cherry, Christopher R., 2020. "Equity of transit connectivity in Tennessee cities," Journal of Transport Geography, Elsevier, vol. 86(C).
    3. Chengming Li & Zhaoxin Dai & Weixiang Peng & Jianming Shen, 2019. "Green Travel Mode: Trajectory Data Cleansing Method for Shared Electric Bicycles," Sustainability, MDPI, vol. 11(5), pages 1-14, March.
    4. Shixiong Jiang & Wei Guan & Zhengbing He & Liu Yang, 2018. "Measuring Taxi Accessibility Using Grid-Based Method with Trajectory Data," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    5. Songkorn Siangsuebchart & Sarawut Ninsawat & Apichon Witayangkurn & Surachet Pravinvongvuth, 2021. "Public Transport GPS Probe and Rail Gate Data for Assessing the Pattern of Human Mobility in the Bangkok Metropolitan Region, Thailand," Sustainability, MDPI, vol. 13(4), pages 1-29, February.
    6. Xing, Jiping & Wu, Wei & Cheng, Qixiu & Liu, Ronghui, 2022. "Traffic state estimation of urban road networks by multi-source data fusion: Review and new insights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    7. Jing Wu & Changlong Ling & Xinzhuo Li, 2019. "Study on the Accessibility and Recreational Development Potential of Lakeside Areas Based on Bike-Sharing Big Data Taking Wuhan City as an Example," Sustainability, MDPI, vol. 12(1), pages 1-20, December.
    8. Ming Sun & Xueyu Jiao, 2023. "Quantitative Identification Study of Epidemic Risk in the Spatial Environment of Harbin City," Sustainability, MDPI, vol. 15(9), pages 1-22, May.
    9. Hu, Beibei & Xia, Xuanxuan & Sun, Huijun & Dong, Xianlei, 2019. "Understanding the imbalance of the taxi market: From the high-quality customer’s perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    10. Yi Dang & Chengjin Wang & Peiran Chen, 2022. "Identification and Optimization Strategy of Urban Park Service Areas Based on Accessibility by Public Transport: Beijing as a Case Study," Sustainability, MDPI, vol. 14(12), pages 1-13, June.
    11. (Ato) Xu, Wangtu & Zhou, Jiangping & Yang, Linchuan & Li, Ling, 2018. "The implications of high-speed rail for Chinese cities: Connectivity and accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 308-326.
    12. Helai Huang & Jialing Wu & Fang Liu & Yiwei Wang, 2020. "Measuring Accessibility Based on Improved Impedance and Attractive Functions Using Taxi Trajectory Data," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    13. Suhono H. Supangkat & Rohullah Ragajaya & Agustinus Bambang Setyadji, 2023. "Implementation of Digital Geotwin-Based Mobile Crowdsensing to Support Monitoring System in Smart City," Sustainability, MDPI, vol. 15(5), pages 1-27, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peer, Stefanie & Knockaert, Jasper & Koster, Paul & Tseng, Yin-Yen & Verhoef, Erik T., 2013. "Door-to-door travel times in RP departure time choice models: An approximation method using GPS data," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 134-150.
    2. Dimitris Bertsimas & Arthur Delarue & Patrick Jaillet & Sébastien Martin, 2019. "Travel Time Estimation in the Age of Big Data," Operations Research, INFORMS, vol. 67(2), pages 498-515, March.
    3. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    4. Shih-Lung Shaw, 2023. "Time geography in a hybrid physical–virtual world," Journal of Geographical Systems, Springer, vol. 25(3), pages 339-356, July.
    5. Christoph Schneider & Bianca Achilles & Hendrik Merbitz, 2014. "Urbanity and Urbanization: An Interdisciplinary Review Combining Cultural and Physical Approaches," Land, MDPI, vol. 3(1), pages 1-26, January.
    6. Martínez, L. Miguel & Viegas, José Manuel, 2013. "A new approach to modelling distance-decay functions for accessibility assessment in transport studies," Journal of Transport Geography, Elsevier, vol. 26(C), pages 87-96.
    7. Martínez-Díaz, Margarita & Pérez, Ignacio, 2015. "A simple algorithm for the estimation of road traffic space mean speeds from data available to most management centres," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 19-35.
    8. André de Palma & Nathalie Picard & Robin Lindsey, 2021. "Activity and Transportation Decisions within Households," THEMA Working Papers 2021-18, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    9. Liang Shen & Feiran Wang & Yueyuan Chen & Xinyi Lv & Zongliang Wen, 2022. "A Reliability-Based Stochastic Traffic Assignment Model for Signalized Traffic Network with Consideration of Link Travel Time Correlations," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    10. Coogan, Samuel & Flores, Christopher & Varaiya, Pravin, 2017. "Traffic predictive control from low-rank structure," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 1-22.
    11. Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
    12. Büchel, Beda & Corman, Francesco, 2022. "Modeling conditional dependencies for bus travel time estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    13. Deboosere, Robbin & El-Geneidy, Ahmed M. & Levinson, David, 2018. "Accessibility-oriented development," Journal of Transport Geography, Elsevier, vol. 70(C), pages 11-20.
    14. Mir Aftab Hussain Talpur & Shabir Hussain Khahro & Tauha Hussain Ali & Hassam Bin Waseem & Madzlan Napiah, 2023. "Computing travel impendences using trip generation regression model: a phenomenon of travel decision-making process of rural households," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 5973-5996, July.
    15. Mitric, Slobodan, 2013. "Urban transport lending by the World Bank: The last decade," Research in Transportation Economics, Elsevier, vol. 40(1), pages 19-33.
    16. Neutens, Tijs, 2015. "Accessibility, equity and health care: review and research directions for transport geographers," Journal of Transport Geography, Elsevier, vol. 43(C), pages 14-27.
    17. Gao, Yuhong & Qu, Zhaowei & Song, Xianmin & Yun, Zhenyu & Xia, Yingji, 2021. "A novel relationship model between signal timing, queue length and travel speed," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    18. Huan Ngo & Sabyasachee Mishra, 2023. "Traffic Graph Convolutional Network for Dynamic Urban Travel Speed Estimation," Networks and Spatial Economics, Springer, vol. 23(1), pages 179-222, March.
    19. Westgate, Bradford S. & Woodard, Dawn B. & Matteson, David S. & Henderson, Shane G., 2016. "Large-network travel time distribution estimation for ambulances," European Journal of Operational Research, Elsevier, vol. 252(1), pages 322-333.
    20. Wong, Wai & Shen, Shengyin & Zhao, Yan & Liu, Henry X., 2019. "On the estimation of connected vehicle penetration rate based on single-source connected vehicle data," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 169-191.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:51:y:2016:i:c:p:147-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.