IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v67y2019i2p498-515.html
   My bibliography  Save this article

Travel Time Estimation in the Age of Big Data

Author

Listed:
  • Dimitris Bertsimas

    (Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;)

  • Arthur Delarue

    (Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;)

  • Patrick Jaillet

    (Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;)

  • Sébastien Martin

    (Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

Abstract

Twenty-first century urban planners have identified the understanding of complex city traffic patterns as a major priority, leading to a sharp increase in the amount and the diversity of traffic data being collected. For instance, taxi companies in an increasing number of major cities have started recording metadata for every individual car ride, such as its origin, destination, and travel time. In this paper, we show that we can leverage network optimization insights to extract accurate travel time estimations from such origin–destination data, using information from a large number of taxi trips to reconstruct the traffic patterns in an entire city. We develop a method that tractably exploits origin–destination data, which, because of its optimization framework, could also take advantage of other sources of traffic information. Using synthetic data, we establish the robustness of our algorithm to high variance data, and the interpretability of its results. We then use hundreds of thousands of taxi travel time observations in Manhattan to show that our algorithm can provide insights about urban traffic patterns on different scales and accurate travel time estimations throughout the network.

Suggested Citation

  • Dimitris Bertsimas & Arthur Delarue & Patrick Jaillet & Sébastien Martin, 2019. "Travel Time Estimation in the Age of Big Data," Operations Research, INFORMS, vol. 67(2), pages 498-515, March.
  • Handle: RePEc:inm:oropre:v:67:y:2019:i:2:p:498-515
    DOI: 10.1287/opre.2018.1784
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/opre.2018.1784
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2018.1784?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patrick Jaillet & Jin Qi & Melvyn Sim, 2016. "Routing Optimization Under Uncertainty," Operations Research, INFORMS, vol. 64(1), pages 186-200, February.
    2. Jenelius, Erik & Koutsopoulos, Haris N., 2013. "Travel time estimation for urban road networks using low frequency probe vehicle data," Transportation Research Part B: Methodological, Elsevier, vol. 53(C), pages 64-81.
    3. Coifman, Benjamin, 2002. "Estimating travel times and vehicle trajectories on freeways using dual loop detectors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(4), pages 351-364, May.
    4. E. Nikolova & N. E. Stier-Moses, 2014. "A Mean-Risk Model for the Traffic Assignment Problem with Stochastic Travel Times," Operations Research, INFORMS, vol. 62(2), pages 366-382, April.
    5. Michał Pióro & Yoann Fouquet & Dritan Nace & Michael Poss, 2016. "Optimizing Flow Thinning Protection in Multicommodity Networks with Variable Link Capacity," Operations Research, INFORMS, vol. 64(2), pages 273-289, April.
    6. Flurin S. Hänseler & Nicholas A. Molyneaux & Michel Bierlaire, 2017. "Estimation of Pedestrian Origin-Destination Demand in Train Stations," Transportation Science, INFORMS, vol. 51(3), pages 981-997, August.
    7. Miles Lubin & Iain Dunning, 2015. "Computing in Operations Research Using Julia," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 238-248, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saridakis, Charalampos & Katsikeas, Constantine S. & Angelidou, Sofia & Oikonomidou, Maria & Pratikakis, Polyvios, 2023. "Mining Twitter lists to extract brand-related associative information for celebrity endorsement," European Journal of Operational Research, Elsevier, vol. 311(1), pages 316-332.
    2. Tsan‐Ming Choi & Subodha Kumar & Xiaohang Yue & Hau‐Ling Chan, 2022. "Disruptive Technologies and Operations Management in the Industry 4.0 Era and Beyond," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 9-31, January.
    3. Felipe Lagos & Sebastián Moreno & Wilfredo F. Yushimito & Tomás Brstilo, 2024. "Urban Origin–Destination Travel Time Estimation Using K-Nearest-Neighbor-Based Methods," Mathematics, MDPI, vol. 12(8), pages 1-18, April.
    4. Long He & Sheng Liu & Zuo‐Jun Max Shen, 2022. "Smart urban transport and logistics: A business analytics perspective," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3771-3787, October.
    5. Wagenaar, J.C. & Fragkos, I. & Faro, W.L.C., 2023. "Transportation asset acquisition under a newsvendor model with cutting-stock restrictions: Approximation and decomposition algorithms," Other publications TiSEM 97eddbd0-6e34-489c-b27d-9, Tilburg University, School of Economics and Management.
    6. Alexandre M. Florio & Nabil Absi & Dominique Feillet, 2021. "Routing Electric Vehicles on Congested Street Networks," Transportation Science, INFORMS, vol. 55(1), pages 238-256, 1-2.
    7. Edward He & Natashia Boland & George Nemhauser & Martin Savelsbergh, 2021. "Time-Dependent Shortest Path Problems with Penalties and Limits on Waiting," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 997-1014, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Xiaoqian & Wang, Dianhai & Ma, Dongfang & Jin, Sheng, 2019. "Grouped travel time estimation in signalized arterials using point-to-point detectors," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 130-151.
    2. Fahad Alrukaibi & Rushdi Alsaleh & Tarek Sayed, 2019. "Applying Machine Learning and Statistical Approaches for Travel Time Estimation in Partial Network Coverage," Sustainability, MDPI, vol. 11(14), pages 1-18, July.
    3. Nantes, Alfredo & Ngoduy, Dong & Miska, Marc & Chung, Edward, 2015. "Probabilistic travel time progression and its application to automatic vehicle identification data," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 131-145.
    4. Mojtaba Rajabi-Bahaabadi & Afshin Shariat-Mohaymany & Mohsen Babaei & Daniele Vigo, 2021. "Reliable vehicle routing problem in stochastic networks with correlated travel times," Operational Research, Springer, vol. 21(1), pages 299-330, March.
    5. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    6. Leilei Zhang & Tito Homem-de-Mello, 2017. "An Optimal Path Model for the Risk-Averse Traveler," Transportation Science, INFORMS, vol. 51(2), pages 518-535, May.
    7. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    8. Randall Berry & Michael Honig & Thành Nguyen & Vijay Subramanian & Rakesh Vohra, 2020. "The Value of Sharing Intermittent Spectrum," Management Science, INFORMS, vol. 66(11), pages 5242-5264, November.
    9. Timothy M. Sweda & Irina S. Dolinskaya & Diego Klabjan, 2017. "Adaptive Routing and Recharging Policies for Electric Vehicles," Transportation Science, INFORMS, vol. 51(4), pages 1326-1348, November.
    10. Zhang, Yu & Wang, Yu & Tang, Jiafu & Lim, Andrew, 2020. "Mitigating overtime risk in tactical surgical scheduling," Omega, Elsevier, vol. 93(C).
    11. Chen, Chao, 2004. "Travel Times on Changeable Message Signs: Pilot Project," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2wp2p0m6, Institute of Transportation Studies, UC Berkeley.
    12. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    13. Ji, Xiangfeng & Chu, Yanyu, 2020. "A target-oriented bi-attribute user equilibrium model with travelers’ perception errors on the tolled traffic network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    14. Martínez-Díaz, Margarita & Pérez, Ignacio, 2015. "A simple algorithm for the estimation of road traffic space mean speeds from data available to most management centres," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 19-35.
    15. Coogan, Samuel & Flores, Christopher & Varaiya, Pravin, 2017. "Traffic predictive control from low-rank structure," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 1-22.
    16. Ethan Anderes & Steffen Borgwardt & Jacob Miller, 2016. "Discrete Wasserstein barycenters: optimal transport for discrete data," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(2), pages 389-409, October.
    17. Dowson, Oscar & Philpott, Andy & Mason, Andrew & Downward, Anthony, 2019. "A multi-stage stochastic optimization model of a pastoral dairy farm," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1077-1089.
    18. Hossein Hashemi Doulabi & Gilles Pesant & Louis-Martin Rousseau, 2020. "Vehicle Routing Problems with Synchronized Visits and Stochastic Travel and Service Times: Applications in Healthcare," Transportation Science, INFORMS, vol. 54(4), pages 1053-1072, July.
    19. Saif Eddin Jabari & Nikolaos M. Freris & Deepthi Mary Dilip, 2020. "Sparse Travel Time Estimation from Streaming Data," Transportation Science, INFORMS, vol. 54(1), pages 1-20, January.
    20. Büchel, Beda & Corman, Francesco, 2022. "Modeling conditional dependencies for bus travel time estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:67:y:2019:i:2:p:498-515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.