IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v191y2025ics0191261524002546.html
   My bibliography  Save this article

A machine learning technique embedded reference-dependent choice model for explanatory power improvement: Shifting of reference point as a key factor in vehicle purchase decision-making

Author

Listed:
  • Kim, Kyungah
  • Kim, Jinseok
  • Park, Subin
  • Lee, Jongsu
  • Kim, Junghun

Abstract

Machine learning is a powerful tool with the potential to improve a choice model's ability to explain consumer behavior. Although the reference-dependent choice model, developed with an emphasis on real decision-making processes, has an advantage over general discrete choice models in terms of explanatory power and interpretability, there is still a lack of consensus on how the reference point should be set. Currently, the common practice is to design a reference point-based utility equation to make an arbitrary decision between past experience, the status quo, and future expectations as the reference point. However, as individual consumers may differ from researchers in how they set their reference points, the current method is rather limited for understanding consumer choice behavior. Therefore, this study proposes a new approach to more accurately understand consumer choice behavior by shifting individual reference points using ANNs (Artificial Neural Networks). The analysis results show that the model proposed in this study has better explanatory power than both the discrete choice model and the existing reference-dependent choice model. This implies that the reference point typically set by researchers approximates each individual's actual reference point through artificial neural networks. This study is significant in that it confirms the possibility that the current status, which showed the highest model fit among several reference price proxy candidates in vehicle choice, may not function as the actual reference price, while also proposing a foundational framework for identifying each consumer's true reference price. Furthermore, it can contribute to corporate strategies and government policy recommendations based on consumer preference analysis, where high explanatory power is required.

Suggested Citation

  • Kim, Kyungah & Kim, Jinseok & Park, Subin & Lee, Jongsu & Kim, Junghun, 2025. "A machine learning technique embedded reference-dependent choice model for explanatory power improvement: Shifting of reference point as a key factor in vehicle purchase decision-making," Transportation Research Part B: Methodological, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:transb:v:191:y:2025:i:c:s0191261524002546
    DOI: 10.1016/j.trb.2024.103130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524002546
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.103130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:191:y:2025:i:c:s0191261524002546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.