IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v145y2025ics0140988325002774.html
   My bibliography  Save this article

Analysis on the acceptance of coal phase-out policy considering public preferences: Policy implications and future direction based on empirical evidence from South Korea

Author

Listed:
  • Moon, Sungho
  • Lee, Jongsu
  • Kim, Junghun
  • Choi, Hyunhong

Abstract

The urgency of coal phase-out has intensified as countries strive to mitigate climate change and achieve carbon neutrality. However, various conflicts may arise during policy implementation, and public acceptance can vary significantly depending on how policies are designed to address these challenges. This study investigates public preferences for coal phase-out policies in South Korea using a discrete choice experiment and simulates the acceptance rates of different policy options based on these preferences. Policy attributes included in the choice experiment are the capacity of decommissioned coal-fired power plants, plant locations, the utilization plan of idle power plant sites, the remaining period until decommissioning, labor conversion rates, and monthly electricity bill increases. Preference analysis indicates that the public prefers decommissioning coal-fired power plants located in the East Sea region and repurposing them into renewable energy power plants. Our simulation analysis reveals that, due to the differing electricity cost increases under each repurposing option, public acceptance declines as decommissioned capacity increases when power plants are repurposed into renewable energy facilities or LNG-combined cycle plants, whereas acceptance of cultural complexes rises. This study further simulates public acceptance for 15 coal-fired power plants in various location and determines the phase-out preference ranking for each plant. Lastly, higher labor conversion rates among the coal workforce can enhance public acceptance of the coal phase-out policy. Overall findings of this study highlight the importance of designing coal phase-out policies that account for economic and social aspects to ensure a balanced and effective just transition.

Suggested Citation

  • Moon, Sungho & Lee, Jongsu & Kim, Junghun & Choi, Hyunhong, 2025. "Analysis on the acceptance of coal phase-out policy considering public preferences: Policy implications and future direction based on empirical evidence from South Korea," Energy Economics, Elsevier, vol. 145(C).
  • Handle: RePEc:eee:eneeco:v:145:y:2025:i:c:s0140988325002774
    DOI: 10.1016/j.eneco.2025.108453
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988325002774
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2025.108453?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Park, Seong-Ju & Kim, Ju-Hee & Yoo, Seung-Hoon, 2023. "Utilization of early retiring coal-fired power plants as a cold reserve in South Korea: A public perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Blankenship, Brian & Aklin, Michaël & Urpelainen, Johannes & Nandan, Vagisha, 2022. "Jobs for a just transition: Evidence on coal job preferences from India," Energy Policy, Elsevier, vol. 165(C).
    3. Huh, Sung-Yoon & Woo, JongRoul & Lim, Sesil & Lee, Yong-Gil & Kim, Chang Seob, 2015. "What do customers want from improved residential electricity services? Evidence from a choice experiment," Energy Policy, Elsevier, vol. 85(C), pages 410-420.
    4. Regier, Dean A. & Ryan, Mandy & Phimister, Euan & Marra, Carlo A., 2009. "Bayesian and classical estimation of mixed logit: An application to genetic testing," Journal of Health Economics, Elsevier, vol. 28(3), pages 598-610, May.
    5. Vermeulen, Bart & Goos, Peter & Vandebroek, Martina, 2008. "Models and optimal designs for conjoint choice experiments including a no-choice option," International Journal of Research in Marketing, Elsevier, vol. 25(2), pages 94-103.
    6. Tan, Hao & Thurbon, Elizabeth & Kim, Sung-Young & Mathews, John A., 2021. "Overcoming incumbent resistance to the clean energy shift: How local governments act as change agents in coal power station closures in China," Energy Policy, Elsevier, vol. 149(C).
    7. List John A. & Sinha Paramita & Taylor Michael H., 2006. "Using Choice Experiments to Value Non-Market Goods and Services: Evidence from Field Experiments," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 6(2), pages 1-39, January.
    8. Arne Hole & Julie Kolstad, 2012. "Mixed logit estimation of willingness to pay distributions: a comparison of models in preference and WTP space using data from a health-related choice experiment," Empirical Economics, Springer, vol. 42(2), pages 445-469, April.
    9. Do, Thang Nam & Burke, Paul J., 2023. "Phasing out coal power in a developing country context: Insights from Vietnam," Energy Policy, Elsevier, vol. 176(C).
    10. Kim, Kyungah & Moon, Sungho & Kim, Junghun, 2023. "How far is it from your home? Strategic policy and management to overcome barriers of introducing fuel-cell power generation facilities," Energy Policy, Elsevier, vol. 182(C).
    11. Kim, Kyungah & Lee, Jongsu & Kim, Junghun, 2021. "Can liquefied petroleum gas vehicles join the fleet of alternative fuel vehicles? Implications of transportation policy based on market forecast and environmental impact," Energy Policy, Elsevier, vol. 154(C).
    12. Oei, Pao-Yu & Brauers, Hanna & Herpich, Philipp, 2020. "Lessons from Germany’s hard coal mining phase-out: policies and transition from 1950 to 2018," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 20(8), pages 963-979.
    13. Borriello, Antonio & Burke, Paul F. & Rose, John M., 2021. "If one goes up, another must come down: A latent class hybrid choice modelling approach for understanding electricity mix preferences among renewables and non-renewables," Energy Policy, Elsevier, vol. 159(C).
    14. Energy Sector Management Assistance Program, 2021. "Coal Plant Repurposing for Ageing Coal Fleets in Developing Countries," World Bank Publications - Reports 36238, The World Bank Group.
    15. Park, Subin & Lee, Jongsu & Kim, Junghun, 2024. "Exploring the fittest choice model for consumer preference analysis on over-the-top service," Technology in Society, Elsevier, vol. 76(C).
    16. Woo, JongRoul & Moon, Sungho & Choi, Hyunhong, 2022. "Economic value and acceptability of advanced solar power systems for multi-unit residential buildings: The case of South Korea," Applied Energy, Elsevier, vol. 324(C).
    17. Lin, Boqiang & Bega, François, 2021. "China's Belt & Road Initiative coal power cooperation: Transitioning toward low-carbon development," Energy Policy, Elsevier, vol. 156(C).
    18. Kim, Kyungah & Choi, Jihye & Lee, Jihee & Lee, Jongsu & Kim, Junghun, 2023. "Public preferences and increasing acceptance of time-varying electricity pricing for demand side management in South Korea," Energy Economics, Elsevier, vol. 119(C).
    19. Choi, Hyunhong & Shim, Dongnyok & Kim, Seung Wan, 2024. "Heterogeneous public preferences for undergrounding high-voltage power transmission lines: The case of Seoul metropolitan area in South Korea," Energy Economics, Elsevier, vol. 132(C).
    20. Komarek, Timothy M. & Lupi, Frank & Kaplowitz, Michael D., 2011. "Valuing energy policy attributes for environmental management: Choice experiment evidence from a research institution," Energy Policy, Elsevier, vol. 39(9), pages 5105-5115, September.
    21. Tabi, Andrea & Hille, Stefanie Lena & Wüstenhagen, Rolf, 2014. "What makes people seal the green power deal? — Customer segmentation based on choice experiment in Germany," Ecological Economics, Elsevier, vol. 107(C), pages 206-215.
    22. Kim, Junghun & Park, Stephen Youngjun & Lee, Jongsu, 2018. "Do people really want renewable energy? Who wants renewable energy?: Discrete choice model of reference-dependent preference in South Korea," Energy Policy, Elsevier, vol. 120(C), pages 761-770.
    23. Jae Young Choi & Jungwoo Shin & Jongsu Lee, 2013. "Strategic demand forecasts for the tablet PC market using the Bayesian mixed logit model and market share simulations," Behaviour and Information Technology, Taylor & Francis Journals, vol. 32(11), pages 1177-1190, November.
    24. F Alpizar & F Carlsson & P Martinsson, 2003. "Using Choice Experiments for Non-Market Valuation," Economic Issues Journal Articles, Economic Issues, vol. 8(1), pages 83-110, March.
    25. Kanberger, Elke D. & Ziegler, Andreas, 2023. "On the preferences for an environmentally friendly and fair energy transition: A stated choice experiment for Germany," Energy Policy, Elsevier, vol. 182(C).
    26. Kim, Ju-Hee & Kim, Hee-Hoon & Yoo, Seung-Hoon, 2022. "Social acceptance toward constructing a combined heat and power plant near people's dwellings in South Korea," Energy, Elsevier, vol. 244(PB).
    27. Woo, JongRoul & Shin, Jungwoo & Kim, Hongbum & Moon, HyungBin, 2022. "Which consumers are willing to pay for smart car healthcare services? A discrete choice experiment approach," Journal of Retailing and Consumer Services, Elsevier, vol. 69(C).
    28. Nick Hanley & Robert Wright & Vic Adamowicz, 1998. "Using Choice Experiments to Value the Environment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 11(3), pages 413-428, April.
    29. Kim, Hyunggeun & Park, Sangkyu & Lee, Jongsu, 2021. "Is renewable energy acceptable with power grid expansion? A quantitative study of South Korea's renewable energy acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    30. Pan, Xunzhang & Ma, Xueqing & Zhang, Yanru & Shao, Tianming & Peng, Tianduo & Li, Xiang & Wang, Lining & Chen, Wenying, 2023. "Implications of carbon neutrality for power sector investments and stranded coal assets in China," Energy Economics, Elsevier, vol. 121(C).
    31. Lee, Chul-Yong & Lee, Min-Kyu & Yoo, Seung-Hoon, 2017. "Willingness to pay for replacing traditional energies with renewable energy in South Korea," Energy, Elsevier, vol. 128(C), pages 284-290.
    32. Dmitriy Li & Meenakshi Rishi & Jeong Hwan Bae, 2023. "Regional Differences in Willingness to Pay for Mitigation of Air Pollution from Coal-Fired Power Plants in South Korea," Sustainability, MDPI, vol. 15(24), pages 1-17, December.
    33. Shin, Jungwoo & Woo, JongRoul & Huh, Sung-Yoon & Lee, Jongsu & Jeong, Gicheol, 2014. "Analyzing public preferences and increasing acceptability for the Renewable Portfolio Standard in Korea," Energy Economics, Elsevier, vol. 42(C), pages 17-26.
    34. Jessica Jewell & Vadim Vinichenko & Lola Nacke & Aleh Cherp, 2019. "Prospects for powering past coal," Nature Climate Change, Nature, vol. 9(8), pages 592-597, August.
    35. McFadden, Daniel, 1974. "The measurement of urban travel demand," Journal of Public Economics, Elsevier, vol. 3(4), pages 303-328, November.
    36. Adrian Rinscheid & Rolf Wüstenhagen, 2019. "Germany’s decision to phase out coal by 2038 lags behind citizens’ timing preferences," Nature Energy, Nature, vol. 4(10), pages 856-863, October.
    37. Greg Muttitt & James Price & Steve Pye & Dan Welsby, 2023. "Socio-political feasibility of coal power phase-out and its role in mitigation pathways," Nature Climate Change, Nature, vol. 13(2), pages 140-147, February.
    38. Pao-Yu Oei & Hanna Brauers & Philipp Herpich, 2020. "Lessons from Germany’s hard coal mining phase-out: policies and transition from 1950 to 2018," Climate Policy, Taylor & Francis Journals, vol. 20(8), pages 963-979, September.
    39. Tiedemann, Silvana & Müller-Hansen, Finn, 2023. "Auctions to phase out coal power: Lessons learned from Germany," Energy Policy, Elsevier, vol. 174(C).
    40. Żuk, Piotr & Żuk, Paweł & Pluciński, Przemysław, 2021. "Coal basin in Upper Silesia and energy transition in Poland in the context of pandemic: The socio-political diversity of preferences in energy and environmental policy," Resources Policy, Elsevier, vol. 71(C).
    41. Kaenzig, Josef & Heinzle, Stefanie Lena & Wüstenhagen, Rolf, 2013. "Whatever the customer wants, the customer gets? Exploring the gap between consumer preferences and default electricity products in Germany," Energy Policy, Elsevier, vol. 53(C), pages 311-322.
    42. Moon, Sungho & Kim, Youngwoo & Kim, Minsang & Lee, Jongsu, 2023. "Policy designs to increase public and local acceptance for energy transition in South Korea," Energy Policy, Elsevier, vol. 182(C).
    43. Jafari, Mehdi & Botterud, Audun & Sakti, Apurba, 2022. "Decarbonizing power systems: A critical review of the role of energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    44. Healy, Noel & Barry, John, 2017. "Politicizing energy justice and energy system transitions: Fossil fuel divestment and a “just transition”," Energy Policy, Elsevier, vol. 108(C), pages 451-459.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moon, Sungho & Kim, Youngwoo & Kim, Minsang & Lee, Jongsu, 2023. "Policy designs to increase public and local acceptance for energy transition in South Korea," Energy Policy, Elsevier, vol. 182(C).
    2. Kim, Hyunggeun & Park, Sangkyu & Lee, Jongsu, 2021. "Is renewable energy acceptable with power grid expansion? A quantitative study of South Korea's renewable energy acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Kim, Kyungah & Moon, Sungho & Kim, Junghun, 2023. "How far is it from your home? Strategic policy and management to overcome barriers of introducing fuel-cell power generation facilities," Energy Policy, Elsevier, vol. 182(C).
    4. Kim, Kyungah & Kim, Jinseok & Park, Subin & Lee, Jongsu & Kim, Junghun, 2025. "A machine learning technique embedded reference-dependent choice model for explanatory power improvement: Shifting of reference point as a key factor in vehicle purchase decision-making," Transportation Research Part B: Methodological, Elsevier, vol. 191(C).
    5. Kamila Svobodova & John R. Owen & Deanna Kemp & Vítězslav Moudrý & Éléonore Lèbre & Martin Stringer & Benjamin K. Sovacool, 2022. "Decarbonization, population disruption and resource inventories in the global energy transition," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Rilling, Benedikt & Kurz, Peter & Herbes, Carsten, 2024. "Renewable gases in the heating market: Identifying consumer preferences through a Discrete Choice Experiment," Energy Policy, Elsevier, vol. 184(C).
    7. Lehmann, Nico & Sloot, Daniel & Ardone, Armin & Fichtner, Wolf, 2021. "The limited potential of regional electricity marketing – Results from two discrete choice experiments in Germany," Energy Economics, Elsevier, vol. 100(C).
    8. Lehmann, Nico & Sloot, Daniel & Schüle, Christopher & Ardone, Armin & Fichtner, Wolf, 2023. "The motivational drivers behind consumer preferences for regional electricity – Results of a choice experiment in Southern Germany," Energy Economics, Elsevier, vol. 120(C).
    9. Böhringer, Christoph & Rosendahl, Knut Einar, 2022. "Europe beyond coal – An economic and climate impact assessment," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    10. Sundt, Swantje & Rehdanz, Katrin, 2015. "Consumers' willingness to pay for green electricity: A meta-analysis of the literature," Energy Economics, Elsevier, vol. 51(C), pages 1-8.
    11. Zhang, Yun-Long & Kang, Jia-Ning & Liu, Lan-Cui & Wei, Yi-Ming, 2024. "Unveiling the evolution and future prospects: A comprehensive review of low-carbon transition in the coal power industry," Applied Energy, Elsevier, vol. 371(C).
    12. Sung-Yoon Huh & Chul-Yong Lee, 2017. "A Demand-Side Perspective on Developing a Future Electricity Generation Mix: Identifying Heterogeneity in Social Preferences," Energies, MDPI, vol. 10(8), pages 1-19, August.
    13. Kalkbrenner, Bernhard J. & Yonezawa, Koichi & Roosen, Jutta, 2017. "Consumer preferences for electricity tariffs: Does proximity matter?," Energy Policy, Elsevier, vol. 107(C), pages 413-424.
    14. Gazmararian, Alexander F., 2024. "Fossil fuel communities support climate policy coupled with just transition assistance," Energy Policy, Elsevier, vol. 184(C).
    15. Fait, Larissa & Wetzel, Heike & Groh, Elke D., 2020. "Choice Preferences for Regional and Green Electricity: Influence of Regional and Environmental Identity," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224574, Verein für Socialpolitik / German Economic Association.
    16. Moon, Sungho & Kim, Kyungah & Seung, Hyunchan & Kim, Junghun, 2022. "Strategic analysis on effects of technologies, government policies, and consumer perceptions on diffusion of hydrogen fuel cell vehicles," Energy Economics, Elsevier, vol. 115(C).
    17. Fait, Larissa & Groh, Elke D. & Wetzel, Heike, 2022. "“I take the green one”: The choice of regional green electricity contracts in the light of regional and environmental identity," Energy Policy, Elsevier, vol. 163(C).
    18. Roxana Voicu-Dorobanțu & Clara Volintiru & Maria-Floriana Popescu & Vlad Nerău & George Ștefan, 2021. "Tackling Complexity of the Just Transition in the EU: Evidence from Romania," Energies, MDPI, vol. 14(5), pages 1-22, March.
    19. Ferguson-Cradler, Gregory, 2022. "Corporate strategy in the Anthropocene: German electricity utilities and the nuclear sudden stop," Ecological Economics, Elsevier, vol. 195(C).
    20. Ndebele, Tom, 2020. "Assessing the potential for consumer-driven renewable energy development in deregulated electricity markets dominated by renewables," Energy Policy, Elsevier, vol. 136(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:145:y:2025:i:c:s0140988325002774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.