IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v136y2020icp48-63.html
   My bibliography  Save this article

Towards welfare optimal operation of innovative mobility concepts: External cost pricing in a world of shared autonomous vehicles

Author

Listed:
  • Kaddoura, Ihab
  • Bischoff, Joschka
  • Nagel, Kai

Abstract

Autonomous vehicles (AV) create new opportunities to traffic planners and policy-makers. In the case of shared autonomous vehicles (SAVs), dynamic pricing, vehicle routing and dispatch strategies may aim for the maximization of the overall system welfare instead of the operator’s profit. In this study, an existing congestion pricing methodology is applied to the SAV transport mode. On the SAV operator’s side, the routing- and dispatch-relevant cost are extended by the time and link-specific congestion charge. On the users’ side, the congestion costs are added to the fare. Simulation experiments are carried out for Berlin, Germany in order to investigate the impact of SAVs and different pricing setups on the transport system. For the pricing setup, where SAV users only pay the base fare and there is no congestion charge added to the user costs, the model predicts an SAV share of 17.7% within the inner-city Berlin service area. The level of traffic congestion increases, air pollution levels decrease and noise levels slightly increase in the inner-city area. The SAV congestion charge pushes users from SAVs to the walk, bicycle and conventional (driver-controlled) private car (CC) mode. The latter effect is avoided by applying the same congestion charge also to CC users. Overall, this study highlights the importance to control both, the SAV and CC mode in order to improve a city’s transport system.

Suggested Citation

  • Kaddoura, Ihab & Bischoff, Joschka & Nagel, Kai, 2020. "Towards welfare optimal operation of innovative mobility concepts: External cost pricing in a world of shared autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 48-63.
  • Handle: RePEc:eee:transa:v:136:y:2020:i:c:p:48-63
    DOI: 10.1016/j.tra.2020.03.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856419310456
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2020.03.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benjamin Kickhöfer & Friederike Hülsmann & Regine Gerike & Kai Nagel, 2013. "Rising car user costs: comparing aggregated and geo-spatial impacts on travel demand and air pollutant emissions," Chapters, in: Thomas Vanoutrive & Ann Verhetsel (ed.), Smart Transport Networks, chapter 9, pages 180-207, Edward Elgar Publishing.
    2. de Palma, André & Lindsey, Robin & Quinet, Emile, 2004. "5. Time-Varying Road Pricing And Choice Of Toll Locations," Research in Transportation Economics, Elsevier, vol. 9(1), pages 107-131, January.
    3. Kraus, Marvin, 1991. "Discomfort externalities and marginal cost transit fares," Journal of Urban Economics, Elsevier, vol. 29(2), pages 249-259, March.
    4. Eliasson, Jonas & Hultkrantz, Lars & Nerhagen, Lena & Rosqvist, Lena Smidfelt, 2009. "The Stockholm congestion - charging trial 2006: Overview of effects," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(3), pages 240-250, March.
    5. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1993. "A Structural Model of Peak-Period Congestion: A Traffic Bottleneck with Elastic Demand," American Economic Review, American Economic Association, vol. 83(1), pages 161-179, March.
    6. Long T. Truong & Chris Gruyter & Graham Currie & Alexa Delbosc, 2017. "Estimating the trip generation impacts of autonomous vehicles on car travel in Victoria, Australia," Transportation, Springer, vol. 44(6), pages 1279-1292, November.
    7. Jun Liu & Kara M. Kockelman & Patrick M. Boesch & Francesco Ciari, 2017. "Tracking a system of shared autonomous vehicles across the Austin, Texas network using agent-based simulation," Transportation, Springer, vol. 44(6), pages 1261-1278, November.
    8. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    9. Börjesson, Maria & Kristoffersson, Ida, 2015. "The Gothenburg congestion charge. Effects, design and politics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 134-146.
    10. Kaddoura, Ihab & Nagel, Kai, 2019. "Congestion pricing in a real-world oriented agent-based simulation context," Research in Transportation Economics, Elsevier, vol. 74(C), pages 40-51.
    11. Moshe Ben-Akiva & Andre de Palma & Pavlos Kanaroglou, 1986. "Dynamic Model of Peak Period Traffic Congestion with Elastic Arrival Rates," Transportation Science, INFORMS, vol. 20(3), pages 164-181, August.
    12. Fagnant, Daniel J. & Kockelman, Kara, 2015. "Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 167-181.
    13. Mustapha Harb & Yu Xiao & Giovanni Circella & Patricia L. Mokhtarian & Joan L. Walker, 2018. "Projecting travelers into a world of self-driving vehicles: estimating travel behavior implications via a naturalistic experiment," Transportation, Springer, vol. 45(6), pages 1671-1685, November.
    14. Bösch, Patrick M. & Becker, Felix & Becker, Henrik & Axhausen, Kay W., 2018. "Cost-based analysis of autonomous mobility services," Transport Policy, Elsevier, vol. 64(C), pages 76-91.
    15. Ihab Kaddoura & Kai Nagel, 2018. "Simultaneous internalization of traffic congestion and noise exposure costs," Transportation, Springer, vol. 45(5), pages 1579-1600, September.
    16. Ihab Kaddoura, 2015. "Marginal Congestion Cost Pricing in a Multi-agent Simulation Investigation of the Greater Berlin Area," Journal of Transport Economics and Policy, University of Bath, vol. 49(4), pages 560-578, October.
    17. Erik T. Verhoef & Kenneth A. Small, 2004. "Product Differentiation on Roads," Journal of Transport Economics and Policy, University of Bath, vol. 38(1), pages 127-156, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yanan & Li, Xiang & Zhang, Sicheng, 2021. "Optimal pricing of customized bus services and ride-sharing based on a competitive game model," Omega, Elsevier, vol. 103(C).
    2. Euchi, Jalel & Kallel, Ahmed, 2021. "Internalization of external congestion and CO2emissions costs related to road transport: The case of Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    3. Simone Pettigrew & Leon Booth & Victoria Farrar & Branislava Godic & Julie Brown & Charles Karl & Jason Thompson, 2022. "Walking in the Era of Autonomous Vehicles," Sustainability, MDPI, vol. 14(17), pages 1-13, August.
    4. Merkert, Rico & Beck, Matthew J. & Bushell, James, 2021. "Will It Fly? Adoption of the road pricing framework to manage drone use of airspace," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 156-170.
    5. Liu, Zhiyong & Li, Ruimin & Dai, Jingchen, 2022. "Effects and feasibility of shared mobility with shared autonomous vehicles: An investigation based on data-driven modeling approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 206-226.
    6. Börjesson, Maria & Asplund, Disa & Hamilton, Carl, 2023. "Optimal kilometre tax for electric vehicles," Transport Policy, Elsevier, vol. 134(C), pages 52-64.
    7. Zwick, Felix & Kuehnel, Nico & Hörl, Sebastian, 2022. "Shifts in perspective: Operational aspects in (non-)autonomous ride-pooling simulations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 300-320.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaddoura, Ihab & Nagel, Kai, 2019. "Congestion pricing in a real-world oriented agent-based simulation context," Research in Transportation Economics, Elsevier, vol. 74(C), pages 40-51.
    2. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
    3. Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.
    4. Small, Kenneth A., 2015. "The bottleneck model: An assessment and interpretation," Economics of Transportation, Elsevier, vol. 4(1), pages 110-117.
    5. de Palma, André & Kilani, Moez & Lindsey, Robin, 2005. "Congestion pricing on a road network: A study using the dynamic equilibrium simulator METROPOLIS," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 588-611.
    6. Richter, Maximilian A. & Hagenmaier, Markus & Bandte, Oliver & Parida, Vinit & Wincent, Joakim, 2022. "Smart cities, urban mobility and autonomous vehicles: How different cities needs different sustainable investment strategies," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    7. Andrea Baranzini & Stefano Carattini & Linda Tesauro, 2021. "Designing Effective and Acceptable Road Pricing Schemes: Evidence from the Geneva Congestion Charge," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(3), pages 417-482, July.
    8. André de Palma & Claude Lefèvre, 2018. "Bottleneck models and departure time problems," Working Papers hal-01581519, HAL.
    9. Leonid Engelson & Ida Kristoffersson & Mohammad Saifuzzaman & André de Palma & Kiarash Motamedi, 2013. "Comparison of two dynamic transportation models: The case of Stockholm congestion charging," Working Papers hal-00779285, HAL.
    10. van den Berg, Vincent A.C., 2014. "Coarse tolling with heterogeneous preferences," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 1-23.
    11. Hideo Konishi, 2004. "Uniqueness of User Equilibrium in Transportation Networks with Heterogeneous Commuters," Transportation Science, INFORMS, vol. 38(3), pages 315-330, August.
    12. Daniel, Joseph I, 1995. "Congestion Pricing and Capacity of Large Hub Airports: A Bottleneck Model with Stochastic Queues," Econometrica, Econometric Society, vol. 63(2), pages 327-370, March.
    13. Verhoef, Erik T., 1999. "Time, speeds, flows and densities in static models of road traffic congestion and congestion pricing," Regional Science and Urban Economics, Elsevier, vol. 29(3), pages 341-369, May.
    14. Eliasson, Jonas, 2017. "Congestion pricing," MPRA Paper 88224, University Library of Munich, Germany.
    15. Kim, Sung Hoo & Circella, Giovanni & Mokhtarian, Patricia L., 2019. "Identifying latent mode-use propensity segments in an all-AV era," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 192-207.
    16. Arnott, Richard, 2013. "A bathtub model of downtown traffic congestion," Journal of Urban Economics, Elsevier, vol. 76(C), pages 110-121.
    17. Amit Agarwal & Benjamin Kickhöfer, 2018. "The correlation of externalities in marginal cost pricing: lessons learned from a real-world case study," Transportation, Springer, vol. 45(3), pages 849-873, May.
    18. Richard Arnott & Anatolii Kokoza & Mehdi Naji, 2015. "A Model of Rush-Hour Traffic in an Isotropic Downtown Area," Working Papers 201511, University of California at Riverside, Department of Economics.
    19. Kristoffersson, Ida, 2013. "Impacts of time-varying cordon pricing: Validation and application of mesoscopic model for Stockholm," Transport Policy, Elsevier, vol. 28(C), pages 51-60.
    20. Lindsey, Robin, 2012. "Road pricing and investment," Economics of Transportation, Elsevier, vol. 1(1), pages 49-63.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:136:y:2020:i:c:p:48-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.