IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v112y2018icp71-84.html
   My bibliography  Save this article

Measuring the rebound effects in air transport: The impact of jet fuel prices and air carriers’ fuel efficiency improvement of the European airlines

Author

Listed:
  • Miyoshi, Chikage
  • Fukui, Hideki

Abstract

This paper attempts to measure the rebound effect (RE) or take back effect of jet fuel prices for air transport by using the unbalanced panel data of the airlines of the Association of European Airlines (AEA) from 1986 to 2013. Three equations are set and modelled simultaneously: (1) traffic demand, (2) aircraft, and (3) fuel efficiency. We consider endogenous changes in fuel efficiency, and the impact of environmental policy such as the EU ETS is also included. Our results show the smaller short run RE, but much larger RE in a long run of air transport. The short-run RE for 1986–1999 is 2.9% and 2.1% for 2000–2013, while the long-run RE is 49% for 1986–1999 and 19% for 2000–2013, respectively. It indicates the effectiveness of the regulation or economic instrument to reduce emissions (fuel consumption) in the air transport market by improving fuel efficiency due to the large RE compared to other sectors.

Suggested Citation

  • Miyoshi, Chikage & Fukui, Hideki, 2018. "Measuring the rebound effects in air transport: The impact of jet fuel prices and air carriers’ fuel efficiency improvement of the European airlines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 112(C), pages 71-84.
  • Handle: RePEc:eee:transa:v:112:y:2018:i:c:p:71-84
    DOI: 10.1016/j.tra.2018.01.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856418300235
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Winchester, Niven & McConnachie, Dominic & Wollersheim, Christoph & Waitz, Ian A., 2013. "Economic and emissions impacts of renewable fuel goals for aviation in the US," Transportation Research Part A: Policy and Practice, Elsevier, vol. 58(C), pages 116-128.
    2. repec:dau:papers:123456789/6792 is not listed on IDEAS
    3. Hymel, Kent M. & Small, Kenneth A. & Dender, Kurt Van, 2010. "Induced demand and rebound effects in road transport," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1220-1241, December.
    4. Kenneth Gillingham & David Rapson & Gernot Wagner, 2016. "The Rebound Effect and Energy Efficiency Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 68-88.
    5. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-52.
    6. Wadud, Zia, 2015. "Decomposing the drivers of aviation fuel demand using simultaneous equation models," Energy, Elsevier, vol. 83(C), pages 551-559.
    7. Brueckner, Jan K. & Zhang, Anming, 2010. "Airline emission charges: Effects on airfares, service quality, and aircraft design," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 960-971, September.
    8. David L. Greene, 1992. "Vehicle Use and Fuel Economy: How Big is the "Rebound" Effect?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 117-144.
    9. Arjomandi, Amir & Seufert, Juergen Heinz, 2014. "An evaluation of the world's major airlines' technical and environmental performance," Economic Modelling, Elsevier, vol. 41(C), pages 133-144.
    10. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    11. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    12. Chèze, Benoît & Gastineau, Pascal & Chevallier, Julien, 2011. "Forecasting world and regional aviation jet fuel demands to the mid-term (2025)," Energy Policy, Elsevier, vol. 39(9), pages 5147-5158, September.
    13. Nathan W. Chan & Kenneth Gillingham, 2015. "The Microeconomic Theory of the Rebound Effect and Its Welfare Implications," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 133-159.
    14. Barros, Carlos Pestana & Couto, Eduardo, 2013. "Productivity analysis of European airlines, 2000–2011," Journal of Air Transport Management, Elsevier, vol. 31(C), pages 11-13.
    15. Miyoshi, C. & Mason, K.J., 2009. "The carbon emissions of selected airlines and aircraft types in three geographic markets," Journal of Air Transport Management, Elsevier, vol. 15(3), pages 138-147.
    16. Miyoshi, Chikage, 2014. "Assessing the equity impact of the European Union Emission Trading Scheme on an African airline," Transport Policy, Elsevier, vol. 33(C), pages 56-64.
    17. Turner, Peter A. & Lim, Siew Hoon, 2015. "Hedging jet fuel price risk: The case of U.S. passenger airlines," Journal of Air Transport Management, Elsevier, vol. 44, pages 54-64.
    18. Barker, Terry & Ekins, Paul & Foxon, Tim, 2007. "The macro-economic rebound effect and the UK economy," Energy Policy, Elsevier, vol. 35(10), pages 4935-4946, October.
    19. Chitnis, Mona & Sorrell, Steve & Druckman, Angela & Firth, Steven K. & Jackson, Tim, 2014. "Who rebounds most? Estimating direct and indirect rebound effects for different UK socioeconomic groups," Ecological Economics, Elsevier, vol. 106(C), pages 12-32.
    20. Alonso, G. & Benito, A. & Lonza, L. & Kousoulidou, M., 2014. "Investigations on the distribution of air transport traffic and CO2 emissions within the European Union," Journal of Air Transport Management, Elsevier, vol. 36(C), pages 85-93.
    21. Adler, Nicole & Martini, Gianmaria & Volta, Nicola, 2013. "Measuring the environmental efficiency of the global aviation fleet," Transportation Research Part B: Methodological, Elsevier, vol. 53(C), pages 82-100.
    22. Druckman, Angela & Chitnis, Mona & Sorrell, Steve & Jackson, Tim, 2011. "Missing carbon reductions? Exploring rebound and backfire effects in UK households," Energy Policy, Elsevier, vol. 39(6), pages 3572-3581, June.
    23. Zou, Bo & Elke, Matthew & Hansen, Mark & Kafle, Nabin, 2014. "Evaluating air carrier fuel efficiency in the US airline industry," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 306-330.
    24. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    25. Hymel, Kent M. & Small, Kenneth A., 2015. "The rebound effect for automobile travel: Asymmetric response to price changes and novel features of the 2000s," Energy Economics, Elsevier, vol. 49(C), pages 93-103.
    26. Berkhout, Peter H. G. & Muskens, Jos C. & W. Velthuijsen, Jan, 2000. "Defining the rebound effect," Energy Policy, Elsevier, vol. 28(6-7), pages 425-432, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Rebound effect; Jet fuel price; Fuel efficiency;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:112:y:2018:i:c:p:71-84. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.