IDEAS home Printed from https://ideas.repec.org/a/eee/teinso/v66y2021ics0160791x21001366.html
   My bibliography  Save this article

The composite impact of ICT industry on lowering carbon intensity: From the perspective of regional heterogeneity

Author

Listed:
  • Sun, Hongye
  • Kim, Giseung

Abstract

The balance between low carbon development and rapid economic growth is a ‘Gordian knot’ for most countries. This study aims to explore the practicable route of lowering carbon intensity with the expansion of the Information and Communication Technologies (ICT) industry in China. Using the provincial panel data from 2000 to 2017, the paper employs five indicators to empirically investigate the determinant mechanism of carbon intensity based on the refined Stochastic Impact by Regression on Population, Affluence, and Technology (STIRPAT) and spatial econometric models. The findings demonstrate that the ICT industry is the main force in adjusting carbon intensity. Despite constraint by the rebound effect, the net effect of the ICT industry shows a significant positive impact on lowering carbon intensity under the consideration of spatial dependence. Furthermore, compared with developed regions, the contribution of ICT on regional inequality of carbon intensity shows a higher share in developing regions. By applying the Oaxaca-Ransom counterfactual decomposition, the results reveal that there are substantial regional gaps between multi-comparable groups. The composite effect of informatization, industrialization, and urbanization accounts for the major share of the regional gap. Thus, policymakers should pay more attention to enhancing the ICT infrastructure in developing regions, boosting the ICT-related technology investment in specific sectors, coordinating regional cooperation, and balancing the migration of skilled workers.

Suggested Citation

  • Sun, Hongye & Kim, Giseung, 2021. "The composite impact of ICT industry on lowering carbon intensity: From the perspective of regional heterogeneity," Technology in Society, Elsevier, vol. 66(C).
  • Handle: RePEc:eee:teinso:v:66:y:2021:i:c:s0160791x21001366
    DOI: 10.1016/j.techsoc.2021.101661
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0160791X21001366
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techsoc.2021.101661?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. You, Wanhai & Lv, Zhike, 2018. "Spillover effects of economic globalization on CO2 emissions: A spatial panel approach," Energy Economics, Elsevier, vol. 73(C), pages 248-257.
    2. Simplice A. Asongu & Jacinta C. Nwachukwu & Chris Pyke, 2019. "The Comparative Economics of ICT, Environmental Degradation and Inclusive Human Development in Sub-Saharan Africa," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 143(3), pages 1271-1297, June.
    3. Zhang, Wen-Wen & Xu, Shi-Chun & Sharp, Basil, 2019. "Do CO2 emissions impact energy use? An assessment of China evidence from 1953 to 2017," China Economic Review, Elsevier, vol. 57(C).
    4. Shuai, Chenyang & Shen, Liyin & Jiao, Liudan & Wu, Ya & Tan, Yongtao, 2017. "Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011," Applied Energy, Elsevier, vol. 187(C), pages 310-325.
    5. Guo, Aifang & Li, Yuke & Zuo, Ze & Chen, Guangpu, 2015. "Influence of organizational elements on manufacturing firms' service-enhancement: An empirical study based on Chinese ICT industry," Technology in Society, Elsevier, vol. 43(C), pages 183-190.
    6. Asongu, Simplice A. & Le Roux, Sara & Biekpe, Nicholas, 2018. "Enhancing ICT for environmental sustainability in sub-Saharan Africa," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 209-216.
    7. Yu, Shiwei & Wei, Yi-Ming & Wang, Ke, 2014. "Provincial allocation of carbon emission reduction targets in China: An approach based on improved fuzzy cluster and Shapley value decomposition," Energy Policy, Elsevier, vol. 66(C), pages 630-644.
    8. Oaxaca, Ronald, 1973. "Male-Female Wage Differentials in Urban Labor Markets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(3), pages 693-709, October.
    9. Beck, Nathaniel & Katz, Jonathan N., 1995. "What To Do (and Not to Do) with Time-Series Cross-Section Data," American Political Science Review, Cambridge University Press, vol. 89(3), pages 634-647, September.
    10. Vu, Khuong M., 2011. "ICT as a source of economic growth in the information age: Empirical evidence from the 1996-2005 period," Telecommunications Policy, Elsevier, vol. 35(4), pages 357-372, May.
    11. Tang, Ya & Xu, Jianguo & Zhang, Xun, 2017. "China's investment and rate of return on capital revisited," Journal of Asian Economics, Elsevier, vol. 49(C), pages 12-25.
    12. Ang, James B., 2009. "CO2 emissions, research and technology transfer in China," Ecological Economics, Elsevier, vol. 68(10), pages 2658-2665, August.
    13. Khan, Ali Nawaz & En, Xie & Raza, Muhammad Yousaf & Khan, Naseer Abbas & Ali, Ahsan, 2020. "Sectorial study of technological progress and CO2 emission: Insights from a developing economy," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    14. Pearson, Peter J.G. & Foxon, Timothy J., 2012. "A low carbon industrial revolution? Insights and challenges from past technological and economic transformations," Energy Policy, Elsevier, vol. 50(C), pages 117-127.
    15. Alan S. Blinder, 1973. "Wage Discrimination: Reduced Form and Structural Estimates," Journal of Human Resources, University of Wisconsin Press, vol. 8(4), pages 436-455.
    16. Dou, Xiangsheng, 2013. "Low Carbon-Economy Development: China's Pattern and Policy Selection," Energy Policy, Elsevier, vol. 63(C), pages 1013-1020.
    17. Kallal, Rahim & Haddaji, Abir & Ftiti, Zied, 2021. "ICT diffusion and economic growth: Evidence from the sectorial analysis of a periphery country," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    18. Ibrahim D. Raheem & Aviral K. Tiwari & Daniel Balsalobre-lorente, 2019. "The Role of ICT and Financial Development on CO2 Emissions and Economic Growth," Working Papers of the African Governance and Development Institute. 19/058, African Governance and Development Institute..
    19. Albiman, Masoud Mohammed & Sulong, Zunaidah, 2017. "The linear and non-linear impacts of ICT on economic growth, of disaggregate income groups within SSA region," Telecommunications Policy, Elsevier, vol. 41(7), pages 555-572.
    20. Bekaroo, Girish & Bokhoree, Chandradeo & Pattinson, Colin, 2016. "Impacts of ICT on the natural ecosystem: A grassroot analysis for promoting socio-environmental sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1580-1595.
    21. Wen-Cheng Lu, 2018. "The impacts of information and communication technology, energy consumption, financial development, and economic growth on carbon dioxide emissions in 12 Asian countries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(8), pages 1351-1365, December.
    22. Sang H. Lee & John Levendis & Luis Gutierrez, 2012. "Telecommunications and economic growth: an empirical analysis of sub-Saharan Africa," Applied Economics, Taylor & Francis Journals, vol. 44(4), pages 461-469, February.
    23. Galvin, Ray, 2015. "The ICT/electronics question: Structural change and the rebound effect," Ecological Economics, Elsevier, vol. 120(C), pages 23-31.
    24. Niebel, Thomas, 2018. "ICT and economic growth – Comparing developing, emerging and developed countries," World Development, Elsevier, vol. 104(C), pages 197-211.
    25. Taeyoung Jin & Jinsoo Kim, 2018. "Coal Consumption and Economic Growth: Panel Cointegration and Causality Evidence from OECD and Non-OECD Countries," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    26. Oaxaca, Ronald L. & Ransom, Michael R., 1994. "On discrimination and the decomposition of wage differentials," Journal of Econometrics, Elsevier, vol. 61(1), pages 5-21, March.
    27. Khatib, Hisham, 2011. "IEA World Energy Outlook 2010--A comment," Energy Policy, Elsevier, vol. 39(5), pages 2507-2511, May.
    28. Albert G. Z. Hu & Gary H. Jefferson & Qian Jinchang, 2005. "R&D and Technology Transfer: Firm-Level Evidence from Chinese Industry," The Review of Economics and Statistics, MIT Press, vol. 87(4), pages 780-786, November.
    29. Liao, Hailin & Wang, Bin & Li, Baibing & Weyman-Jones, Tom, 2016. "ICT as a general-purpose technology: The productivity of ICT in the United States revisited," Information Economics and Policy, Elsevier, vol. 36(C), pages 10-25.
    30. Chien, Fengsheng & Anwar, Ahsan & Hsu, Ching-Chi & Sharif, Arshian & Razzaq, Asif & Sinha, Avik, 2021. "The role of information and communication technology in encountering environmental degradation: Proposing an SDG framework for the BRICS countries," Technology in Society, Elsevier, vol. 65(C).
    31. Sanjeev Dewan & Kenneth L. Kraemer, 2000. "Information Technology and Productivity: Evidence from Country-Level Data," Management Science, INFORMS, vol. 46(4), pages 548-562, April.
    32. Amri, Fethi & Zaied, Younes Ben & Lahouel, Bechir Ben, 2019. "ICT, total factor productivity, and carbon dioxide emissions in Tunisia," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 212-217.
    33. Yue-Jun Zhang & Zhao Liu & Huan Zhang & Tai-De Tan, 2014. "The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 579-595, September.
    34. Uddin, Mueen & Rahman, Azizah Abdul, 2012. "Energy efficiency and low carbon enabler green IT framework for data centers considering green metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4078-4094.
    35. Dehghan Shabani, Zahra & Shahnazi, Rouhollah, 2019. "Energy consumption, carbon dioxide emissions, information and communications technology, and gross domestic product in Iranian economic sectors: A panel causality analysis," Energy, Elsevier, vol. 169(C), pages 1064-1078.
    36. Albrecht, Johan & Francois, Delphine & Schoors, Koen, 2002. "A Shapley decomposition of carbon emissions without residuals," Energy Policy, Elsevier, vol. 30(9), pages 727-736, July.
    37. Ang, B. W. & Liu, F. L. & Chew, E. P., 2003. "Perfect decomposition techniques in energy and environmental analysis," Energy Policy, Elsevier, vol. 31(14), pages 1561-1566, November.
    38. Anthony Shorrocks, 2013. "Decomposition procedures for distributional analysis: a unified framework based on the Shapley value," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 11(1), pages 99-126, March.
    39. Avom, Désiré & Nkengfack, Hilaire & Fotio, Hervé Kaffo & Totouom, Armand, 2020. "ICT and environmental quality in Sub-Saharan Africa: Effects and transmission channels," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    40. Cheng, Zhonghua & Li, Lianshui & Liu, Jun, 2018. "Industrial structure, technical progress and carbon intensity in China's provinces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2935-2946.
    41. Maddison, David, 2006. "Environmental Kuznets curves: A spatial econometric approach," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 218-230, March.
    42. Wang, Zhaohua & Han, Bai & Lu, Milin, 2016. "Measurement of energy rebound effect in households: Evidence from residential electricity consumption in Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 852-861.
    43. Davillas, Apostolos & Jones, Andrew M., 2020. "Regional inequalities in adiposity in England: distributional analysis of the contribution of individual-level characteristics and the small area obesogenic environment," Economics & Human Biology, Elsevier, vol. 38(C).
    44. Binswanger, Mathias, 2001. "Technological progress and sustainable development: what about the rebound effect?," Ecological Economics, Elsevier, vol. 36(1), pages 119-132, January.
    45. Jiao, Jianling & Jiang, Guili & Yang, Ranran, 2018. "Impact of R&D technology spillovers on carbon emissions between China’s regions," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 35-45.
    46. Bekhet, Hussain Ali & Latif, Nurul Wahilah Abdul, 2018. "The impact of technological innovation and governance institution quality on Malaysia's sustainable growth: Evidence from a dynamic relationship," Technology in Society, Elsevier, vol. 54(C), pages 27-40.
    47. Adedoyin, Festus Fatai & Bekun, Festus Victor & Driha, Oana M. & Balsalobre-Lorente, Daniel, 2020. "The effects of air transportation, energy, ICT and FDI on economic growth in the industry 4.0 era: Evidence from the United States," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    48. Zhang, Jing & Liang, Xiong-jian, 2012. "Promoting green ICT in China: A framework based on innovation system approaches," Telecommunications Policy, Elsevier, vol. 36(10), pages 997-1013.
    49. Salahuddin, Mohammad & Alam, Khorshed & Ozturk, Ilhan & Sohag, Kazi, 2018. "The effects of electricity consumption, economic growth, financial development and foreign direct investment on CO2 emissions in Kuwait," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2002-2010.
    50. Pradhan, Rudra P. & Arvin, Mak B. & Norman, Neville R., 2015. "The dynamics of information and communications technologies infrastructure, economic growth, and financial development: Evidence from Asian countries," Technology in Society, Elsevier, vol. 42(C), pages 135-149.
    51. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2019. "How information and communication technology drives carbon emissions: A sector-level analysis for China," Energy Economics, Elsevier, vol. 81(C), pages 380-392.
    52. Hong, Jae-pyo, 2017. "Causal relationship between ICT R&D investment and economic growth in Korea," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 70-75.
    53. Huang, Junbing & Du, Dan & Hao, Yu, 2017. "The driving forces of the change in China's energy intensity: An empirical research using DEA-Malmquist and spatial panel estimations," Economic Modelling, Elsevier, vol. 65(C), pages 41-50.
    54. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    55. Pádraig Carmody, 2013. "A knowledge economy or an information society in Africa? Thintegration and the mobile phone revolution," Information Technology for Development, Taylor & Francis Journals, vol. 19(1), pages 24-39, January.
    56. Zhang, Chuanguo & Liu, Cong, 2015. "The impact of ICT industry on CO2 emissions: A regional analysis in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 12-19.
    57. Zhai, Xueqi & An, Yunfei, 2021. "The relationship between technological innovation and green transformation efficiency in China: An empirical analysis using spatial panel data," Technology in Society, Elsevier, vol. 64(C).
    58. Jorgenson, Dale W. & Vu, Khuong M., 2016. "The ICT revolution, world economic growth, and policy issues," Telecommunications Policy, Elsevier, vol. 40(5), pages 383-397.
    59. Moyer, Jonathan D. & Hughes, Barry B., 2012. "ICTs: Do they contribute to increased carbon emissions?," Technological Forecasting and Social Change, Elsevier, vol. 79(5), pages 919-931.
    60. Mirza, Faisal Mehmood & Kanwal, Afra, 2017. "Energy consumption, carbon emissions and economic growth in Pakistan: Dynamic causality analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1233-1240.
    61. Chung, Hyuk, 2018. "ICT investment-specific technological change and productivity growth in Korea: Comparison of 1996–2005 and 2006–2015," Telecommunications Policy, Elsevier, vol. 42(1), pages 78-90.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Fan & Yunyun Zhang & Meilin Jin & Qiang Ma & Jing Zhao, 2022. "Does New Digital Infrastructure Promote the Transformation of the Energy Structure? The Perspective of China’s Energy Industry Chain," Energies, MDPI, vol. 15(23), pages 1-18, November.
    2. Emrah Kocak & Hayriye Hilal Baglitas, 2022. "The path to sustainable municipal solid waste management: Do human development, energy efficiency, and income inequality matter?," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1947-1962, December.
    3. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    4. Fan, Fei & Dai, Shangze & Yang, Bo & Ke, Haiqian, 2023. "Urban density, directed technological change, and carbon intensity: An empirical study based on Chinese cities," Technology in Society, Elsevier, vol. 72(C).
    5. Xu, Qiong & Zhong, Meirui & Li, Xin, 2022. "How does digitalization affect energy? International evidence," Energy Economics, Elsevier, vol. 107(C).
    6. Sun, Xianming & Xiao, Shiyi & Ren, Xiaohang & Xu, Bing, 2023. "Time-varying impact of information and communication technology on carbon emissions," Energy Economics, Elsevier, vol. 118(C).
    7. Pan Rao & Xiaojin Liu & Shubin Zhu & Xiaolan Kang & Xinglei Zhao & Fangting Xie, 2022. "Does the Application of ICTs Improve the Efficiency of Agricultural Carbon Reduction? Evidence from Broadband Adoption in Rural China," IJERPH, MDPI, vol. 19(13), pages 1-19, June.
    8. Keyong Zhang & Sulun Li & Peng Qin & Bohong Wang, 2022. "Spatial and Temporal Effects of Digital Technology Development on Carbon Emissions: Evidence from China," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    9. Xiaowen Wang & Nishang Tian & Shuting Wang, 2022. "The Impact of Information and Communication Technology Industrial Co-Agglomeration on Carbon Productivity with the Background of the Digital Economy: Empirical Evidence from China," IJERPH, MDPI, vol. 20(1), pages 1-21, December.
    10. Li, Yaya & Zhang, Yuru & Pan, An & Han, Minchun & Veglianti, Eleonora, 2022. "Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms," Technology in Society, Elsevier, vol. 70(C).
    11. Bakry, Walid & Mallik, Girijasankar & Nghiem, Xuan-Hoa & Sinha, Avik & Vo, Xuan Vinh, 2023. "Is green finance really “green”? Examining the long-run relationship between green finance, renewable energy and environmental performance in developing countries," Renewable Energy, Elsevier, vol. 208(C), pages 341-355.
    12. Wang, Jianda & Dong, Xiucheng & Dong, Kangyin, 2022. "How digital industries affect China's carbon emissions? Analysis of the direct and indirect structural effects," Technology in Society, Elsevier, vol. 68(C).
    13. Ahmad, Manzoor & Zheng, Jianghuai, 2021. "Do innovation in environmental-related technologies cyclically and asymmetrically affect environmental sustainability in BRICS nations?," Technology in Society, Elsevier, vol. 67(C).
    14. Wu, Xuepin & Ma, Yongjun, 2023. "Research on the comparison effect of urban residents' consumption," Journal of Business Research, Elsevier, vol. 160(C).
    15. Almansour, Mohammed, 2022. "Electric vehicles (EV) and sustainability: Consumer response to twin transition, the role of e-businesses and digital marketing," Technology in Society, Elsevier, vol. 71(C).
    16. Jin, Zhida & Li, Zheng & Yang, Mian, 2022. "Producer services development and manufacturing carbon intensity: Evidence from an international perspective," Energy Policy, Elsevier, vol. 170(C).
    17. Chinazaekpere Nwani & Ekpeno L. Effiong & Enyinnaya Timothy Matthew, 2023. "Globalization‐induced social changes and their environmental impacts: Assessing the role of information and communication technology in sub‐Saharan Africa," Journal of International Development, John Wiley & Sons, Ltd., vol. 35(2), pages 347-367, March.
    18. Congyu Zhao & Kangyin Dong & Farhad Taghizadeh-Hesary, 2023. "Can smart transportation enhance green development efficiency?," Economic Change and Restructuring, Springer, vol. 56(2), pages 825-857, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Usman, Ahmed & Ozturk, Ilhan & Ullah, Sana & Hassan, Ali, 2021. "Does ICT have symmetric or asymmetric effects on CO2 emissions? Evidence from selected Asian economies," Technology in Society, Elsevier, vol. 67(C).
    2. Nchofoung, Tii N. & Asongu, Simplice A., 2022. "ICT for sustainable development: Global comparative evidence of globalisation thresholds," Telecommunications Policy, Elsevier, vol. 46(5).
    3. Alataş, Sedat, 2022. "Do environmental technologies help to reduce transport sector CO2 emissions? Evidence from the EU15 countries," Research in Transportation Economics, Elsevier, vol. 91(C).
    4. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    5. Tang, Chang & Xue, Yan & Wu, Haitao & Irfan, Muhammad & Hao, Yu, 2022. "How does telecommunications infrastructure affect eco-efficiency? Evidence from a quasi-natural experiment in China," Technology in Society, Elsevier, vol. 69(C).
    6. Chien, Fengsheng & Anwar, Ahsan & Hsu, Ching-Chi & Sharif, Arshian & Razzaq, Asif & Sinha, Avik, 2021. "The role of information and communication technology in encountering environmental degradation: Proposing an SDG framework for the BRICS countries," Technology in Society, Elsevier, vol. 65(C).
    7. Njangang, Henri & Beleck, Alim & Tadadjeu, Sosson & Kamguia, Brice, 2022. "Do ICTs drive wealth inequality? Evidence from a dynamic panel analysis," Telecommunications Policy, Elsevier, vol. 46(2).
    8. Henri Njangang & Alim Beleck & Sosson Tadadjeu & Brice Kamguia, 2021. "Do ICTs drive wealth inequality? Evidence from a dynamic panel analysis," Working Papers of the African Governance and Development Institute. 21/057, African Governance and Development Institute..
    9. Sun, Xianming & Xiao, Shiyi & Ren, Xiaohang & Xu, Bing, 2023. "Time-varying impact of information and communication technology on carbon emissions," Energy Economics, Elsevier, vol. 118(C).
    10. Ben Lahouel, Béchir & Taleb, Lotfi & Ben Zaied, Younes & Managi, Shunsuke, 2021. "Does ICT change the relationship between total factor productivity and CO2 emissions? Evidence based on a nonlinear model," Energy Economics, Elsevier, vol. 101(C).
    11. Wang, Jen Chun, 2022. "Understanding the energy consumption of information and communications equipment: A case study of schools in Taiwan," Energy, Elsevier, vol. 249(C).
    12. Xu, Qiong & Zhong, Meirui & Li, Xin, 2022. "How does digitalization affect energy? International evidence," Energy Economics, Elsevier, vol. 107(C).
    13. Favour Chidinma Onuoha & Benedict I. Uzoechina & Chukwunenye Ferguson Emekaraonye & Onyinye Ifeoma Ochuba & Nora Francis Inyang, 2023. "Information and communication technologies and sustainable development in ECOWAS subregion: Evidence from a panel cointegration analysis," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(2), pages 787-806, March.
    14. Henri Njangang & Alim Beleck & Sosson Tadadjeu & Brice Kamguia, 2021. "Do ICTs drive wealth inequality? Evidence from a dynamic panel analysis," Working Papers 21/057, European Xtramile Centre of African Studies (EXCAS).
    15. Zhong, Mei-Rui & Cao, Meng-Yuan & Zou, Han, 2022. "The carbon reduction effect of ICT: A perspective of factor substitution," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    16. Asif Khan & Wu Ximei, 2022. "Digital Economy and Environmental Sustainability: Do Information Communication and Technology (ICT) and Economic Complexity Matter?," IJERPH, MDPI, vol. 19(19), pages 1-21, September.
    17. Samba Diop & Simplice A. Asongu, 2022. "Information and Communication Technologies (ICTs) as catalyst for the achievement of Sustainable Development Goals (SGDs) at the local level in Africa," Working Papers of the African Governance and Development Institute. 22/084, African Governance and Development Institute..
    18. Bright Akwasi Gyamfi & Asiedu B. Ampomah & Festus V. Bekun & Simplice A. Asongu, 2022. "Can information and communication technology and institutional quality help mitigate climate change in E7 economies? An environmental Kuznets curve extension," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 11(1), pages 1-20, December.
    19. Zhang, Chunhong & Khan, Irfan & Dagar, Vishal & Saeed, Asif & Zafar, Muhammad Wasif, 2022. "Environmental impact of information and communication technology: Unveiling the role of education in developing countries," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    20. Suyi Kim, 2022. "The Effects of Information and Communication Technology, Economic Growth, Trade Openness, and Renewable Energy on CO 2 Emissions in OECD Countries," Energies, MDPI, vol. 15(7), pages 1-15, March.

    More about this item

    Keywords

    Carbon intensity; ICT industry; STIRPAT model; Regional gap;
    All these keywords.

    JEL classification:

    • L52 - Industrial Organization - - Regulation and Industrial Policy - - - Industrial Policy; Sectoral Planning Methods
    • O18 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Urban, Rural, Regional, and Transportation Analysis; Housing; Infrastructure
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:teinso:v:66:y:2021:i:c:s0160791x21001366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/technology-in-society .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.