IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v118y2023ics0140988322006211.html
   My bibliography  Save this article

Time-varying impact of information and communication technology on carbon emissions

Author

Listed:
  • Sun, Xianming
  • Xiao, Shiyi
  • Ren, Xiaohang
  • Xu, Bing

Abstract

To investigate the time-varying net environmental impact of Information and Communication Technology (ICT), we apply the local linear dummy variable estimation (LLDVE) method using a panel data consisting of 63 countries for the period 1995–2017. Our analysis reveals that ICT increases CO2 emissions until 2004, while reducing them after 2008, regardless of the national income level. We further uncover that the positive environmental impact of ICT on high-income countries is about 10 times greater than that on middle-income countries over time. These findings indicate that the development of ICT should be encouraged to alleviate carbon emissions on a global scale, especially for middle-income countries, given the benefits of an improved technology absorption rate on the mitigation effect in high income countries.

Suggested Citation

  • Sun, Xianming & Xiao, Shiyi & Ren, Xiaohang & Xu, Bing, 2023. "Time-varying impact of information and communication technology on carbon emissions," Energy Economics, Elsevier, vol. 118(C).
  • Handle: RePEc:eee:eneeco:v:118:y:2023:i:c:s0140988322006211
    DOI: 10.1016/j.eneco.2022.106492
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988322006211
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2022.106492?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asongu, Simplice A. & Le Roux, Sara & Biekpe, Nicholas, 2017. "Environmental degradation, ICT and inclusive development in Sub-Saharan Africa," Energy Policy, Elsevier, vol. 111(C), pages 353-361.
    2. Jan C. T. Bieser & Lorenz M. Hilty, 2018. "Assessing Indirect Environmental Effects of Information and Communication Technology (ICT): A Systematic Literature Review," Sustainability, MDPI, vol. 10(8), pages 1-19, July.
    3. Soumyananda Dinda, 2018. "Production technology and carbon emission: long-run relation with short-run dynamics," Journal of Applied Economics, Taylor & Francis Journals, vol. 21(1), pages 106-121, January.
    4. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    5. Hledik, Ryan, 2009. "How Green Is the Smart Grid?," The Electricity Journal, Elsevier, vol. 22(3), pages 29-41, April.
    6. Sun, Hongye & Kim, Giseung, 2021. "The composite impact of ICT industry on lowering carbon intensity: From the perspective of regional heterogeneity," Technology in Society, Elsevier, vol. 66(C).
    7. Kouton, Jeffrey, 2019. "Information Communication Technology development and energy demand in African countries," Energy, Elsevier, vol. 189(C).
    8. Kiviet, Jan F., 2020. "Testing the impossible: Identifying exclusion restrictions," Journal of Econometrics, Elsevier, vol. 218(2), pages 294-316.
    9. Pesaran, M. Hashem & Vanessa Smith, L. & Yamagata, Takashi, 2013. "Panel unit root tests in the presence of a multifactor error structure," Journal of Econometrics, Elsevier, vol. 175(2), pages 94-115.
    10. Zheng, Jiajia & Wang, Xingwu, 2021. "Can mobile information communication technologies (ICTs) promote the development of renewables?-evidence from seven countries," Energy Policy, Elsevier, vol. 149(C).
    11. Jung Wan Lee & Kip Becker, 2015. "Relationship between information communications technology, economic growth and carbon emissions: evidence from panel analysis of the G20," Global Business and Economics Review, Inderscience Enterprises Ltd, vol. 17(1), pages 35-50.
    12. Gozgor, Giray & Tiwari, Aviral Kumar & Khraief, Naceur & Shahbaz, Muhammad, 2019. "Dependence structure between business cycles and CO2 emissions in the U.S.: Evidence from the time-varying Markov-Switching Copula models," Energy, Elsevier, vol. 188(C).
    13. Hazwan Haini, 2021. "Examining the impact of ICT, human capital and carbon emissions: Evidence from the ASEAN economies," International Economics, CEPII research center, issue 166, pages 116-125.
    14. Sebastian Kripfganz & Jan F. Kiviet, 2021. "kinkyreg: Instrument-free inference for linear regression models with endogenous regressors," Stata Journal, StataCorp LP, vol. 21(3), pages 772-813, September.
    15. Ren, Xiaohang & Tong, Ziwei & Sun, Xianming & Yan, Cheng, 2022. "Dynamic impacts of energy consumption on economic growth in China: Evidence from a non-parametric panel data model," Energy Economics, Elsevier, vol. 107(C).
    16. Jens Malmodin & Dag Lundén, 2018. "The Energy and Carbon Footprint of the Global ICT and E&M Sectors 2010–2015," Sustainability, MDPI, vol. 10(9), pages 1-31, August.
    17. Wen-Cheng Lu, 2018. "The impacts of information and communication technology, energy consumption, financial development, and economic growth on carbon dioxide emissions in 12 Asian countries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(8), pages 1351-1365, December.
    18. Galvin, Ray, 2015. "The ICT/electronics question: Structural change and the rebound effect," Ecological Economics, Elsevier, vol. 120(C), pages 23-31.
    19. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    20. Recep Ulucak & Danish & Salah Ud‐Din Khan, 2020. "Does information and communication technology affect CO2 mitigation under the pathway of sustainable development during the mode of globalization?," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 857-867, July.
    21. Yang, Jun & Hao, Yun & Feng, Chao, 2021. "A race between economic growth and carbon emissions: What play important roles towards global low-carbon development?," Energy Economics, Elsevier, vol. 100(C).
    22. Jung Wan Lee & Tantatape Brahmasrene, 2014. "ICT, CO 2 Emissions and Economic Growth: Evidence from a Panel of ASEAN," Global Economic Review, Taylor & Francis Journals, vol. 43(2), pages 93-109, June.
    23. Damian Clarke & Benjamín Matta, 2018. "Practical considerations for questionable IVs," Stata Journal, StataCorp LP, vol. 18(3), pages 663-691, September.
    24. Xiaohang Ren & Cheng Cheng & Zhen Wang & Cheng Yan, 2021. "Spillover and dynamic effects of energy transition and economic growth on carbon dioxide emissions for the European Union: A dynamic spatial panel model," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 228-242, January.
    25. Chien, Fengsheng & Anwar, Ahsan & Hsu, Ching-Chi & Sharif, Arshian & Razzaq, Asif & Sinha, Avik, 2021. "The role of information and communication technology in encountering environmental degradation: Proposing an SDG framework for the BRICS countries," Technology in Society, Elsevier, vol. 65(C).
    26. Silvapulle, Param & Smyth, Russell & Zhang, Xibin & Fenech, Jean-Pierre, 2017. "Nonparametric panel data model for crude oil and stock market prices in net oil importing countries," Energy Economics, Elsevier, vol. 67(C), pages 255-267.
    27. Amri, Fethi & Zaied, Younes Ben & Lahouel, Bechir Ben, 2019. "ICT, total factor productivity, and carbon dioxide emissions in Tunisia," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 212-217.
    28. Degui Li & Jia Chen & Jiti Gao, 2011. "Non‐parametric time‐varying coefficient panel data models with fixed effects," Econometrics Journal, Royal Economic Society, vol. 14(3), pages 387-408, October.
    29. Wang, Jianda & Dong, Xiucheng & Dong, Kangyin, 2022. "How does ICT agglomeration affect carbon emissions? The case of Yangtze River Delta urban agglomeration in China," Energy Economics, Elsevier, vol. 111(C).
    30. Timothy G. Conley & Christian B. Hansen & Peter E. Rossi, 2012. "Plausibly Exogenous," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 260-272, February.
    31. Sadorsky, Perry, 2012. "Information communication technology and electricity consumption in emerging economies," Energy Policy, Elsevier, vol. 48(C), pages 130-136.
    32. Yiguo Sun & Raymond J. Carroll & Dingding Li, 2009. "Semiparametric estimation of fixed-effects panel data varying coefficient models," Advances in Econometrics, in: Nonparametric Econometric Methods, pages 101-129, Emerald Group Publishing Limited.
    33. Ben Lahouel, Béchir & Taleb, Lotfi & Ben Zaied, Younes & Managi, Shunsuke, 2021. "Does ICT change the relationship between total factor productivity and CO2 emissions? Evidence based on a nonlinear model," Energy Economics, Elsevier, vol. 101(C).
    34. Geum, Youngjung & Kim, Moon-Soo & Lee, Sungjoo, 2016. "How industrial convergence happens: A taxonomical approach based on empirical evidences," Technological Forecasting and Social Change, Elsevier, vol. 107(C), pages 112-120.
    35. Zhang, Jing & Liang, Xiong-jian, 2012. "Promoting green ICT in China: A framework based on innovation system approaches," Telecommunications Policy, Elsevier, vol. 36(10), pages 997-1013.
    36. Wang, Xiong & Wang, Xiao & Ren, Xiaohang & Wen, Fenghua, 2022. "Can digital financial inclusion affect CO2 emissions of China at the prefecture level? Evidence from a spatial econometric approach," Energy Economics, Elsevier, vol. 109(C).
    37. Zhang, Chuanguo & Liu, Cong, 2015. "The impact of ICT industry on CO2 emissions: A regional analysis in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 12-19.
    38. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Rishan Adha & Cheng-Yih Hong & Somya Agrawal & Li-Hua Li, 2023. "ICT, carbon emissions, climate change, and energy demand nexus: The potential benefit of digitalization in Taiwan," Energy & Environment, , vol. 34(5), pages 1619-1638, August.
    3. Chien, Fengsheng & Anwar, Ahsan & Hsu, Ching-Chi & Sharif, Arshian & Razzaq, Asif & Sinha, Avik, 2021. "The role of information and communication technology in encountering environmental degradation: Proposing an SDG framework for the BRICS countries," Technology in Society, Elsevier, vol. 65(C).
    4. Ibrahim D. Raheem & Aviral K. Tiwari & Daniel Balsalobre-lorente, 2019. "The Role of ICT and Financial Development on CO2 Emissions and Economic Growth," Working Papers of the African Governance and Development Institute. 19/058, African Governance and Development Institute..
    5. Xu, Qiong & Zhong, Meirui & Li, Xin, 2022. "How does digitalization affect energy? International evidence," Energy Economics, Elsevier, vol. 107(C).
    6. Bakry, Walid & Nghiem, Xuan-Hoa & Farouk, Sherine & Vo, Xuan Vinh, 2023. "Does it hurt or help? Revisiting the effects of ICT on economic growth and energy consumption: A nonlinear panel ARDL approach," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 597-617.
    7. Asif Khan & Wu Ximei, 2022. "Digital Economy and Environmental Sustainability: Do Information Communication and Technology (ICT) and Economic Complexity Matter?," IJERPH, MDPI, vol. 19(19), pages 1-21, September.
    8. Emad Kazemzadeh & José Alberto Fuinhas & Narges Salehnia & Fariba Osmani, 2023. "The effect of economic complexity, fertility rate, and information and communication technology on ecological footprint in the emerging economies: a two-step stirpat model and panel quantile regressio," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(1), pages 737-763, February.
    9. Sun, Hongye & Kim, Giseung, 2021. "The composite impact of ICT industry on lowering carbon intensity: From the perspective of regional heterogeneity," Technology in Society, Elsevier, vol. 66(C).
    10. Bright Akwasi Gyamfi & Asiedu B. Ampomah & Festus V. Bekun & Simplice A. Asongu, 2022. "Can information and communication technology and institutional quality help mitigate climate change in E7 economies? An environmental Kuznets curve extension," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 11(1), pages 1-20, December.
    11. Alataş, Sedat, 2022. "Do environmental technologies help to reduce transport sector CO2 emissions? Evidence from the EU15 countries," Research in Transportation Economics, Elsevier, vol. 91(C).
    12. Haldar, Anasuya & Sethi, Narayan, 2022. "Environmental effects of Information and Communication Technology - Exploring the roles of renewable energy, innovation, trade and financial development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    13. Xiaohong Liu, 2023. "Impacts of Environmental Pollution and Digital Economy on the New Energy Industry," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    14. Wang, Jianda & Dong, Kangyin & Dong, Xiucheng & Taghizadeh-Hesary, Farhad, 2022. "Assessing the digital economy and its carbon-mitigation effects: The case of China," Energy Economics, Elsevier, vol. 113(C).
    15. Huang, Chaoqun & Liu, Weibai & Iqbal, Wasim & Shah, Syed Ale Raza, 2024. "Does digital governance matter for environmental sustainability? The key challenges and opportunities under the prism of natural resource management," Resources Policy, Elsevier, vol. 91(C).
    16. Balsalobre-Lorente, Daniel & Abbas, Jaffar & He, Chang & Pilař, Ladislav & Shah, Syed Ale Raza, 2023. "Tourism, urbanization and natural resources rents matter for environmental sustainability: The leading role of AI and ICT on sustainable development goals in the digital era," Resources Policy, Elsevier, vol. 82(C).
    17. Wang, Jianda & Dong, Xiucheng & Dong, Kangyin, 2022. "How does ICT agglomeration affect carbon emissions? The case of Yangtze River Delta urban agglomeration in China," Energy Economics, Elsevier, vol. 111(C).
    18. Huang, Yongming & Haseeb, Mohammad & Usman, Muhammad & Ozturk, Ilhan, 2022. "Dynamic association between ICT, renewable energy, economic complexity and ecological footprint: Is there any difference between E-7 (developing) and G-7 (developed) countries?," Technology in Society, Elsevier, vol. 68(C).
    19. abid, Nabila & Ceci, Federica & Razzaq, Asif, 2023. "Inclusivity of information and communication technology in ecological governance for sustainable resources management in G10 countries," Resources Policy, Elsevier, vol. 81(C).
    20. Chinazaekpere Nwani & Ekpeno L. Effiong & Enyinnaya Timothy Matthew, 2023. "Globalization‐induced social changes and their environmental impacts: Assessing the role of information and communication technology in sub‐Saharan Africa," Journal of International Development, John Wiley & Sons, Ltd., vol. 35(2), pages 347-367, March.

    More about this item

    Keywords

    Information and communication technology (ICT); Carbon emissions; Time-varying coefficient function; Nonparametric panel data;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:118:y:2023:i:c:s0140988322006211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.