IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v79y2017icp71-81.html
   My bibliography  Save this article

An assessment of Iran's natural gas potential for transition toward low-carbon economy

Author

Listed:
  • Hafeznia, Hamed
  • Pourfayaz, Fathollah
  • Maleki, Akbar

Abstract

To mitigate climate change, low-carbon economy is introduced as a sustainable development strategy. Natural gas, as an alternative to pollutant fuels such as coal, which is now widely used, could facilitate global transition to the age of renewable energy. Iran is one of the major emitters of CO2 in the world, and it is thus, crucial to move toward low-carbon economy in order to accomplish its commitment in reducing GHG emissions. This study evaluates Iran's natural gas industry development by reviewing reserves, production and consumption, infrastructures as well as natural gas agreements. The total proven natural gas reserves of Iran is estimated 33500bcm by the end of 2015, where more than 60% of them are offshore. There exists 23 active fields in Iran and the largest of which is South Pars gas reservoirs in the Persian Gulf. The gross production of natural gas was 257623 million cubic meters in 2015 of which 80% was marketed. The current state of Iran's natural gas industry is assessed as an acceptable level due to massive reserves, high production capacity, wide transmission and distribution network and high penetration of natural gas in cities and villages. That is why natural gas has the highest contribution in the national energy mix, resulting in replacing petroleum fuels with natural gas to decrease CO2 emissions. However, in recent years, delays in implementing development projects of the natural gas industry made supplying domestic demand difficult during cold seasons. Furthermore, it negatively influenced the nation's gas export potential. Iran's natural gas industry faces some challenges including growing domestic demand, high energy loses in residential and commercial sectors and low efficiency of energy systems in industrial and power generation sectors. If challenges are solved, natural gas could serve as a bridge for transition toward the low-carbon future of Iran.

Suggested Citation

  • Hafeznia, Hamed & Pourfayaz, Fathollah & Maleki, Akbar, 2017. "An assessment of Iran's natural gas potential for transition toward low-carbon economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 71-81.
  • Handle: RePEc:eee:rensus:v:79:y:2017:i:c:p:71-81
    DOI: 10.1016/j.rser.2017.05.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117306780
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Mansour, Fouad & Sucic, Boris & Pusnik, Matevz, 2014. "Challenges and prospects of electricity production from renewable energy sources in Slovenia," Energy, Elsevier, vol. 77(C), pages 73-81.
    2. Lee, Yusin, 2014. "Opportunities and risks in Turkmenistan’s quest for diversification of its gas export routes," Energy Policy, Elsevier, vol. 74(C), pages 330-339.
    3. Afsharzade, Nashmil & Papzan, Abdolhamid & Ashjaee, Mehdi & Delangizan, Sohrab & Van Passel, Steven & Azadi, Hossein, 2016. "Renewable energy development in rural areas of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 743-755.
    4. Zhang, Fan, 2013. "The energy transition of the transition economies: An empirical analysis," Energy Economics, Elsevier, vol. 40(C), pages 679-686.
    5. Lay, Jann & Ondraczek, Janosch & Stoever, Jana, 2013. "Renewables in the energy transition: Evidence on solar home systems and lighting fuel choice in Kenya," Energy Economics, Elsevier, vol. 40(C), pages 350-359.
    6. Bernard M. Hoekman & Togan Sübidey, 2005. "Turkey : Economic Reform and Accession to the European Union," World Bank Publications - Books, The World Bank Group, number 7494, December.
    7. Lipp, Judith, 2007. "Lessons for effective renewable electricity policy from Denmark, Germany and the United Kingdom," Energy Policy, Elsevier, vol. 35(11), pages 5481-5495, November.
    8. Ford, Rebecca & Walton, Sara & Stephenson, Janet & Rees, David & Scott, Michelle & King, Geoff & Williams, John & Wooliscroft, Ben, 2017. "Emerging energy transitions: PV uptake beyond subsidies," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 138-150.
    9. Laird, Frank N. & Stefes, Christoph, 2009. "The diverging paths of German and United States policies for renewable energy: Sources of difference," Energy Policy, Elsevier, vol. 37(7), pages 2619-2629, July.
    10. Gralla, Fabienne & Abson, David J. & Møller, Anders P. & Lang, Daniel J. & von Wehrden, Henrik, 2017. "Energy transitions and national development indicators: A global review of nuclear energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1251-1265.
    11. Yazdanpanah, Masoud & Komendantova, Nadejda & Ardestani, Roshanak Shafiei, 2015. "Governance of energy transition in Iran: Investigating public acceptance and willingness to use renewable energy sources through socio-psychological model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 565-573.
    12. Dabbaghiyan, Amir & Fazelpour, Farivar & Abnavi, Mohhamadreza Dehghan & Rosen, Marc A., 2016. "Evaluation of wind energy potential in province of Bushehr, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 455-466.
    13. Verbong, Geert & Geels, Frank, 2007. "The ongoing energy transition: Lessons from a socio-technical, multi-level analysis of the Dutch electricity system (1960-2004)," Energy Policy, Elsevier, vol. 35(2), pages 1025-1037, February.
    14. Kakaee, Amir-Hasan & Paykani, Amin, 2013. "Research and development of natural-gas fueled engines in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 805-821.
    15. Rubio, M.d.Mar & Folchi, Mauricio, 2012. "Will small energy consumers be faster in transition? Evidence from the early shift from coal to oil in Latin America," Energy Policy, Elsevier, vol. 50(C), pages 50-61.
    16. Oyedepo, Sunday Olayinka, 2014. "Towards achieving energy for sustainable development in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 255-272.
    17. Bahrami, Mohsen & Abbaszadeh, Payam, 2013. "An overview of renewable energies in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 198-208.
    18. Luthra, Sunil & Kumar, Sanjay & Garg, Dixit & Haleem, Abid, 2015. "Barriers to renewable/sustainable energy technologies adoption: Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 762-776.
    19. Mahmood, Anzar & Javaid, Nadeem & Zafar, Adnan & Ali Riaz, Raja & Ahmed, Saeed & Razzaq, Sohail, 2014. "Pakistan's overall energy potential assessment, comparison of LNG, TAPI and IPI gas projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 182-193.
    20. Ozturk, Murat & Yuksel, Yunus Emre & Ozek, Nuri, 2011. "A Bridge between East and West: Turkey's natural gas policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4286-4294.
    21. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    22. Zhang, Fan, 2013. "The energy transition of the transition economies : an empirical analysis," Policy Research Working Paper Series 6387, The World Bank.
    23. Noorollahi, Younes & Yousefi, Hossein & Itoi, Ryuichi & Ehara, Sachio, 2009. "Geothermal energy resources and development in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1127-1132, June.
    24. Alamdari, Pouria & Nematollahi, Omid & Alemrajabi, Ali Akbar, 2013. "Solar energy potentials in Iran: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 778-788.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyed Azad Nabavi & Alireza Aslani & Martha A. Zaidan & Majid Zandi & Sahar Mohammadi & Naser Hossein Motlagh, 2020. "Machine Learning Modeling for Energy Consumption of Residential and Commercial Sectors," Energies, MDPI, vol. 13(19), pages 1-22, October.
    2. Ravanipour, Masoumeh & Hamidi, Ali & Mahvi, Amir Hossein, 2021. "Microalgae biodiesel: A systematic review in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Mohammad Soltani & Omeid Rahmani & Amin Beiranvand Pour & Yousef Ghaderpour & Ibrahim Ngah & Siti Hajar Misnan, 2019. "Determinants of Variation in Household Energy Choice and Consumption: Case from Mahabad City, Iran," Sustainability, MDPI, vol. 11(17), pages 1-20, September.
    4. Daneshzand, Farzaneh & Asali, Mehdi & Al-Sobhi, Saad A. & Diabat, Ali & Elkamel, Ali, 2022. "A simulation-based optimization scheme for phase-out of natural gas subsidies considering welfare and economic measures," Energy, Elsevier, vol. 259(C).
    5. Li, Fengyun & Li, Xingmei & Zheng, Haofeng & Yang, Fei & Dang, Ruinan, 2021. "How alternative energy competition shocks natural gas development in China: A novel time series analysis approach," Resources Policy, Elsevier, vol. 74(C).
    6. AlNemer, Hashem A. & Hkiri, Besma & Tissaoui, Kais, 2023. "Dynamic impact of renewable and non-renewable energy consumption on CO2 emission and economic growth in Saudi Arabia: Fresh evidence from wavelet coherence analysis," Renewable Energy, Elsevier, vol. 209(C), pages 340-356.
    7. Mehdizadeh-Fard, Mohsen & Pourfayaz, Fathollah, 2018. "A simple method for estimating the irreversibly in heat exchanger networks," Energy, Elsevier, vol. 144(C), pages 633-646.
    8. Alipour, Mohammad & Hafezi, Reza & Ervural, Bilal & Kaviani, Mohamad Amin & Kabak, Özgür, 2018. "Long-term policy evaluation: Application of a new robust decision framework for Iran's energy exports security," Energy, Elsevier, vol. 157(C), pages 914-931.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sehatpour, Mohammad-Hadi & Kazemi, Aliyeh & Sehatpour, Hesam-eddin, 2017. "Evaluation of alternative fuels for light-duty vehicles in Iran using a multi-criteria approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 295-310.
    2. Noorollahi, Younes & Pourarshad, Meysam & Veisi, Alireza, 2021. "The synergy of renewable energies for sustainable energy systems development in oil-rich nations; case of Iran," Renewable Energy, Elsevier, vol. 173(C), pages 561-568.
    3. Dumas, Marion & Rising, James & Urpelainen, Johannes, 2016. "Political competition and renewable energy transitions over long time horizons: A dynamic approach," Ecological Economics, Elsevier, vol. 124(C), pages 175-184.
    4. Morteza Aien & Omid Mahdavi, 2020. "On the Way of Policy Making to Reduce the Reliance of Fossil Fuels: Case Study of Iran," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    5. Ifaei, Pouya & Farid, Alireza & Yoo, ChangKyoo, 2018. "An optimal renewable energy management strategy with and without hydropower using a factor weighted multi-criteria decision making analysis and nation-wide big data - Case study in Iran," Energy, Elsevier, vol. 158(C), pages 357-372.
    6. Andrew Chapman & Timothy Fraser & Melanie Dennis, 2019. "Investigating Ties between Energy Policy and Social Equity Research: A Citation Network Analysis," Social Sciences, MDPI, vol. 8(5), pages 1-18, April.
    7. Małgorzata Sztorc, 2022. "The Implementation of the European Green Deal Strategy as a Challenge for Energy Management in the Face of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, April.
    8. Johannes Urpelainen, 2012. "How do electoral competition and special interests shape the stringency of renewable energy standards?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 14(1), pages 23-34, January.
    9. Taghizadeh-Hesary, Farhad & Rasoulinezhad, Ehsan & Shahbaz, Muhammad & Vinh Vo, Xuan, 2021. "How energy transition and power consumption are related in Asian economies with different income levels?," Energy, Elsevier, vol. 237(C).
    10. Asante, Dennis & He, Zheng & Adjei, Nana Osae & Asante, Bismark, 2020. "Exploring the barriers to renewable energy adoption utilising MULTIMOORA- EDAS method," Energy Policy, Elsevier, vol. 142(C).
    11. Ghorbani, Narges & Aghahosseini, Arman & Breyer, Christian, 2020. "Assessment of a cost-optimal power system fully based on renewable energy for Iran by 2050 – Achieving zero greenhouse gas emissions and overcoming the water crisis," Renewable Energy, Elsevier, vol. 146(C), pages 125-148.
    12. Najafi, G. & Ghobadian, B. & Mamat, R. & Yusaf, T. & Azmi, W.H., 2015. "Solar energy in Iran: Current state and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 931-942.
    13. Rajbhandari, Ashish & Zhang, Fan, 2018. "Does energy efficiency promote economic growth? Evidence from a multicountry and multisectoral panel dataset," Energy Economics, Elsevier, vol. 69(C), pages 128-139.
    14. Mohammadi, Kasra & Khorasanizadeh, Hossein, 2015. "A review of solar radiation on vertically mounted solar surfaces and proper azimuth angles in six Iranian major cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 504-518.
    15. Afsharzade, Nashmil & Papzan, Abdolhamid & Ashjaee, Mehdi & Delangizan, Sohrab & Van Passel, Steven & Azadi, Hossein, 2016. "Renewable energy development in rural areas of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 743-755.
    16. Timo Kaphengst & Eike Karola Velten, 2014. "Energy Transition and Behavioural Change in Rural Areas – The Role of Energy Cooperatives. WWWforEurope Working Paper No. 60," WIFO Studies, WIFO, number 47214, February.
    17. Oryani, Bahareh & Koo, Yoonmo & Rezania, Shahabaldin & Shafiee, Afsaneh, 2021. "Barriers to renewable energy technologies penetration: Perspective in Iran," Renewable Energy, Elsevier, vol. 174(C), pages 971-983.
    18. Mollahosseini, Arash & Hosseini, Seyed Amid & Jabbari, Mostafa & Figoli, Alberto & Rahimpour, Ahmad, 2017. "Renewable energy management and market in Iran: A holistic review on current state and future demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 774-788.
    19. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    20. Stokes, Leah C., 2013. "The politics of renewable energy policies: The case of feed-in tariffs in Ontario, Canada," Energy Policy, Elsevier, vol. 56(C), pages 490-500.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:79:y:2017:i:c:p:71-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.