IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v189y2022icp383-391.html
   My bibliography  Save this article

Feasibility study of using renewable energies in Iranian Seas: A comparative study

Author

Listed:
  • Nematian, Javad
  • Rahimi, Iman

Abstract

Global economy is developing rapidly and consequently energy requirements has been focused, particularly in developing countries. There are potentials of using renewable energies in the cities and Islands located in Iranian Seas. In this study, five locations in the Persian Gulf and the Gulf of Oman, combining of wind and solar energies have been considered. This paper evaluates the best locations for using different renewable energies in some important cities in the south of Iran. The paper presents a comparative study among different hybrid renewable energies (Wind and Solar) in five cities of Iran located in the coast of the Persian Gulf and the Gulf of Oman namely, Kish Island, Qeshm Island, Chabahar, Jask, and Genaveh. To evaluate the feasibility of using renewable energies in the above-mentioned locations, four types of building namely; hospital, large hotel, medium office, and strip mall have been analyzed. HOMER Software has been used to analyze and optimize different configurations. Considering the load profiles of chosen cases, the optimum solution for different configuration along with cost summary is obtained and analyzed. The simulation results presents that Kish Island owns the most load profile among other cities and PV-Diesel-Battery-Converter is the most suitable hybrid system, which possesses the optimum cost for the considered buildings. Moreover, Chabahar has mostly the most amount of carbon emission for the proposed case studies and owns the maximum lowest cost system among all considered cities except in the case of large hotel where Jask has the maximum initial capital cost.

Suggested Citation

  • Nematian, Javad & Rahimi, Iman, 2022. "Feasibility study of using renewable energies in Iranian Seas: A comparative study," Renewable Energy, Elsevier, vol. 189(C), pages 383-391.
  • Handle: RePEc:eee:renene:v:189:y:2022:i:c:p:383-391
    DOI: 10.1016/j.renene.2022.02.109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122002580
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.02.109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buonomano, Annamaria & Calise, Francesco & d'Accadia, Massimo Dentice & Vicidomini, Maria, 2018. "A hybrid renewable system based on wind and solar energy coupled with an electrical storage: Dynamic simulation and economic assessment," Energy, Elsevier, vol. 155(C), pages 174-189.
    2. Yang, H.X. & Lu, L. & Burnett, J., 2003. "Weather data and probability analysis of hybrid photovoltaic–wind power generation systems in Hong Kong," Renewable Energy, Elsevier, vol. 28(11), pages 1813-1824.
    3. Bahrami, Mohsen & Abbaszadeh, Payam, 2013. "An overview of renewable energies in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 198-208.
    4. Ghobadian, Barat & Najafi, Gholamhassan & Rahimi, Hadi & Yusaf, T.F., 2009. "Future of renewable energies in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 689-695, April.
    5. Najafi, G. & Ghobadian, B. & Mamat, R. & Yusaf, T. & Azmi, W.H., 2015. "Solar energy in Iran: Current state and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 931-942.
    6. Fazelpour, Farivar & Soltani, Nima & Rosen, Marc A., 2014. "Feasibility of satisfying electrical energy needs with hybrid systems for a medium-size hotel on Kish Island, Iran," Energy, Elsevier, vol. 73(C), pages 856-865.
    7. Li, Qian & Loy-Benitez, Jorge & Nam, KiJeon & Hwangbo, Soonho & Rashidi, Jouan & Yoo, ChangKyoo, 2019. "Sustainable and reliable design of reverse osmosis desalination with hybrid renewable energy systems through supply chain forecasting using recurrent neural networks," Energy, Elsevier, vol. 178(C), pages 277-292.
    8. Ellabban, Omar & Abu-Rub, Haitham & Blaabjerg, Frede, 2014. "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 748-764.
    9. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    10. Alamdari, Pouria & Nematollahi, Omid & Alemrajabi, Ali Akbar, 2013. "Solar energy potentials in Iran: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 778-788.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Majidi Nezhad, Meysam & Neshat, Mehdi & Piras, Giuseppe & Astiaso Garcia, Davide, 2022. "Sites exploring prioritisation of offshore wind energy potential and mapping for wind farms installation: Iranian islands case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Najafi, G. & Ghobadian, B. & Mamat, R. & Yusaf, T. & Azmi, W.H., 2015. "Solar energy in Iran: Current state and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 931-942.
    2. Mollahosseini, Arash & Hosseini, Seyed Amid & Jabbari, Mostafa & Figoli, Alberto & Rahimpour, Ahmad, 2017. "Renewable energy management and market in Iran: A holistic review on current state and future demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 774-788.
    3. Morteza Aien & Omid Mahdavi, 2020. "On the Way of Policy Making to Reduce the Reliance of Fossil Fuels: Case Study of Iran," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    4. Ahmadi, Gholamreza & Toghraie, Davood & Akbari, Omid Ali, 2017. "Solar parallel feed water heating repowering of a steam power plant: A case study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 474-485.
    5. Gorjian, Shiva & Ghobadian, Barat, 2015. "Solar desalination: A sustainable solution to water crisis in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 571-584.
    6. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud & Sadeghi, Zeinolabedin, 2017. "Solar photovoltaic power plants in five top oil-producing countries in Middle East: A case study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1271-1280.
    7. Noorollahi, Younes & Pourarshad, Meysam & Veisi, Alireza, 2021. "The synergy of renewable energies for sustainable energy systems development in oil-rich nations; case of Iran," Renewable Energy, Elsevier, vol. 173(C), pages 561-568.
    8. Ifaei, Pouya & Farid, Alireza & Yoo, ChangKyoo, 2018. "An optimal renewable energy management strategy with and without hydropower using a factor weighted multi-criteria decision making analysis and nation-wide big data - Case study in Iran," Energy, Elsevier, vol. 158(C), pages 357-372.
    9. Gorjian, Shiva & Zadeh, Babak Nemat & Eltrop, Ludger & Shamshiri, Redmond R. & Amanlou, Yasaman, 2019. "Solar photovoltaic power generation in Iran: Development, policies, and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 110-123.
    10. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    11. Mehrabankhomartash, Mahmoud & Rayati, Mohammad & Sheikhi, Aras & Ranjbar, Ali Mohammad, 2017. "Practical battery size optimization of a PV system by considering individual customer damage function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 36-50.
    12. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).
    13. Fazelpour, Farivar & Soltani, Nima & Soltani, Sina & Rosen, Marc A., 2015. "Assessment of wind energy potential and economics in the north-western Iranian cities of Tabriz and Ardabil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 87-99.
    14. Jahangiri, Mehdi & Rezaei, Mostafa & Mostafaeipour, Ali & Goojani, Afsaneh Raiesi & Saghaei, Hamed & Hosseini Dehshiri, Seyyed Jalaladdin & Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach," Renewable Energy, Elsevier, vol. 186(C), pages 889-903.
    15. Haratian, Mojtaba & Tabibi, Pouya & Sadeghi, Meisam & Vaseghi, Babak & Poustdouz, Amin, 2018. "A renewable energy solution for stand-alone power generation: A case study of KhshU Site-Iran," Renewable Energy, Elsevier, vol. 125(C), pages 926-935.
    16. Mohammadi, Kasra & Khorasanizadeh, Hossein, 2015. "A review of solar radiation on vertically mounted solar surfaces and proper azimuth angles in six Iranian major cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 504-518.
    17. Afsharzade, Nashmil & Papzan, Abdolhamid & Ashjaee, Mehdi & Delangizan, Sohrab & Van Passel, Steven & Azadi, Hossein, 2016. "Renewable energy development in rural areas of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 743-755.
    18. Joaquín Fuentes-del-Burgo & Elena Navarro-Astor & Nuno M. M. Ramos & João Poças Martins, 2021. "Exploring the Critical Barriers to the Implementation of Renewable Technologies in Existing University Buildings," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    19. Zobeidi, Tahereh & Komendantova, Nadejda & Yazdanpanah, Masoud, 2022. "Social media as a driver of the use of renewable energy: The perceptions of instagram users in Iran," Energy Policy, Elsevier, vol. 161(C).
    20. Yazdanpanah, Masoud & Komendantova, Nadejda & Ardestani, Roshanak Shafiei, 2015. "Governance of energy transition in Iran: Investigating public acceptance and willingness to use renewable energy sources through socio-psychological model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 565-573.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:189:y:2022:i:c:p:383-391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.