IDEAS home Printed from
   My bibliography  Save this article

A bibliometric analysis of research on carbon tax from 1989 to 2014


  • Zhang, Kun
  • Wang, Qian
  • Liang, Qiao-Mei
  • Chen, Hao


As one of the most cost-effective means of emission reduction, carbon tax has attracted considerable attention from economists and international organizations and has led to a large number of related research. Using the bibliometric method, this paper characterizes the carbon tax literature from 1989 to 2014 based on the Network Database Platform of Web of Science. The results indicate that the USA occupies a leading position in the carbon tax field. The Vrije University Amsterdam, Massachusetts Institute of Technology and Stanford University were the most productive research institutes. Energy Policy (143) has been the most productive journal followed by Energy Economics (44) and Energy (38). In general, the cooperation of authors, institutes and nations are continuing to strengthen; however, the growth rate at the author level was significantly higher than the others. In addition, the current key research areas in the carbon tax field based on Co-Keyword Analysis are as follows: climate change and relevant policy, carbon emissions trading, socio-economic effects of carbon tax, renewable energy, endogenous technological change and carbon capture and storage. The results of this paper will help researchers grasp the current research in the carbon tax field but also provide a supporting role for future work.

Suggested Citation

  • Zhang, Kun & Wang, Qian & Liang, Qiao-Mei & Chen, Hao, 2016. "A bibliometric analysis of research on carbon tax from 1989 to 2014," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 297-310.
  • Handle: RePEc:eee:rensus:v:58:y:2016:i:c:p:297-310
    DOI: 10.1016/j.rser.2015.12.089

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Bordigoni, Mathieu & Hita, Alain & Le Blanc, Gilles, 2012. "Role of embodied energy in the European manufacturing industry: Application to short-term impacts of a carbon tax," Energy Policy, Elsevier, vol. 43(C), pages 335-350.
    2. Mathur, Aparna & Morris, Adele C., 2014. "Distributional effects of a carbon tax in broader U.S. fiscal reform," Energy Policy, Elsevier, vol. 66(C), pages 326-334.
    3. Chynoweth, David P & Owens, John M & Legrand, Robert, 2001. "Renewable methane from anaerobic digestion of biomass," Renewable Energy, Elsevier, vol. 22(1), pages 1-8.
    4. Smulders, Sjak & Tsur, Yacov & Zemel, Amos, 2012. "Announcing climate policy: Can a green paradox arise without scarcity?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 364-376.
    5. Jiang, Zhujun & Shao, Shuai, 2014. "Distributional effects of a carbon tax on Chinese households: A case of Shanghai," Energy Policy, Elsevier, vol. 73(C), pages 269-277.
    6. Bureau, Benjamin, 2011. "Distributional effects of a carbon tax on car fuels in France," Energy Economics, Elsevier, vol. 33(1), pages 121-130, January.
    7. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
    8. Orlov, Anton & Grethe, Harald & McDonald, Scott, 2013. "Carbon taxation in Russia: Prospects for a double dividend and improved energy efficiency," Energy Economics, Elsevier, vol. 37(C), pages 128-140.
    9. Allan, Grant & Lecca, Patrizio & McGregor, Peter & Swales, Kim, 2014. "The economic and environmental impact of a carbon tax for Scotland: A computable general equilibrium analysis," Ecological Economics, Elsevier, vol. 100(C), pages 40-50.
    10. Warwick McKibbin & Adele Morris & Peter Wilcoxen, 2014. "A Proposal to Integrate Price Mechanisms into International Climate Negotiations," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 1(3), pages 600-608, September.
    11. Grimaud, André & Rouge, Luc, 2014. "Carbon sequestration, economic policies and growth," Resource and Energy Economics, Elsevier, vol. 36(2), pages 307-331.
    12. repec:cii:cepiei:2013-q3-4-135-136-6 is not listed on IDEAS
    13. Levin, Todd & Thomas, Valerie M. & Lee, Audrey J., 2011. "State-scale evaluation of renewable electricity policy: The role of renewable electricity credits and carbon taxes," Energy Policy, Elsevier, vol. 39(2), pages 950-960, February.
    14. Strand, Jon, 2013. "Strategic climate policy with offsets and incomplete abatement: Carbon taxes versus cap-and-trade," Journal of Environmental Economics and Management, Elsevier, vol. 66(2), pages 202-218.
    15. Jean Chateau & Anne Saint-Martin, 2013. "Economic and employment impacts of climate change mitigation policies in OECD: a general-equilibrium perspective," International Economics, CEPII research center, issue 135-136, pages 79-103.
    16. MacKenzie, Ian A. & Ohndorf, Markus, 2012. "Cap-and-trade, taxes, and distributional conflict," Journal of Environmental Economics and Management, Elsevier, vol. 63(1), pages 51-65.
    17. Chen, Shiyi, 2013. "What is the potential impact of a taxation system reform on carbon abatement and industrial growth in China?," Economic Systems, Elsevier, vol. 37(3), pages 369-386.
    18. Abolhosseini, Shahrouz & Heshmati, Almas, 2014. "The main support mechanisms to finance renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 876-885.
    19. Liang, Qiao-Mei & Wei, Yi-Ming, 2012. "Distributional impacts of taxing carbon in China: Results from the CEEPA model," Applied Energy, Elsevier, vol. 92(C), pages 545-551.
    20. Cong, Rong-Gang & Wei, Yi-Ming, 2010. "Potential impact of (CET) carbon emissions trading on China’s power sector: A perspective from different allowance allocation options," Energy, Elsevier, vol. 35(9), pages 3921-3931.
    21. Shiell, Leslie & Lyssenko, Nikita, 2014. "Climate policy and induced R&D: How great is the effect?," Energy Economics, Elsevier, vol. 46(C), pages 279-294.
    22. Lawrence H. Goulder & Andrew Schein, 2013. "Carbon Taxes vs. Cap and Trade: A Critical Review," NBER Working Papers 19338, National Bureau of Economic Research, Inc.
    23. Hans-Werner Sinn, 2008. "Public policies against global warming: a supply side approach," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 15(4), pages 360-394, August.
    24. Bristow, Abigail L. & Wardman, Mark & Zanni, Alberto M. & Chintakayala, Phani K., 2010. "Public acceptability of personal carbon trading and carbon tax," Ecological Economics, Elsevier, vol. 69(9), pages 1824-1837, July.
    25. Hart, Rob, 2008. "The timing of taxes on CO2 emissions when technological change is endogenous," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 194-212, March.
    26. Dissou, Yazid & Siddiqui, Muhammad Shahid, 2014. "Can carbon taxes be progressive?," Energy Economics, Elsevier, vol. 42(C), pages 88-100.
    27. van der Ploeg, Frederick & Withagen, Cees, 2012. "Is there really a green paradox?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 342-363.
    28. Al-Abdullah, Anwar Y., 1999. "The Carbon-tax debate," Applied Energy, Elsevier, vol. 64(1-4), pages 3-13, September.
    29. Asafu-Adjaye, John & Mahadevan, Renuka, 2013. "Implications of CO2 reduction policies for a high carbon emitting economy," Energy Economics, Elsevier, vol. 38(C), pages 32-41.
    30. Barbier, Enrico, 2002. "Geothermal energy technology and current status: an overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(1-2), pages 3-65.
    31. Choi, Jun-Ki & Bakshi, Bhavik R. & Haab, Timothy, 2010. "Effects of a carbon price in the U.S. on economic sectors, resource use, and emissions: An input-output approach," Energy Policy, Elsevier, vol. 38(7), pages 3527-3536, July.
    32. Michael Goldblatt, 2010. "Comparison of emissions trading and carbon taxation in South Africa," Climate Policy, Taylor & Francis Journals, vol. 10(5), pages 511-526, September.
    33. Romagnoli, Francesco & Barisa, Aiga & Dzene, Ilze & Blumberga, Andra & Blumberga, Dagnija, 2014. "Implementation of different policy strategies promoting the use of wood fuel in the Latvian district heating system: Impact evaluation through a system dynamic model," Energy, Elsevier, vol. 76(C), pages 210-222.
    34. Kahn, James Randall & Franceschi, Dina, 2006. "Beyond Kyoto: A tax-based system for the global reduction of greenhouse gas emissions," Ecological Economics, Elsevier, vol. 58(4), pages 778-787, July.
    35. Gilles Le Blanc & Mathieu Bordigoni & Alain Hita, 2012. "Role of embodied energy in the European manufacturing industry: Application to short-term impacts of a carbon tax," Post-Print hal-00768525, HAL.
    36. Kim, Wook & Chattopadhyay, Deb & Park, Jong-bae, 2010. "Impact of carbon cost on wholesale electricity price: A note on price pass-through issues," Energy, Elsevier, vol. 35(8), pages 3441-3448.
    37. repec:cii:cepiie:2013-q3-4-135-136-12 is not listed on IDEAS
    38. Cong, Rong-Gang & Wei, Yi-Ming, 2012. "Experimental comparison of impact of auction format on carbon allowance market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4148-4156.
    39. Nordhaus, William D., 1993. "Rolling the 'DICE': an optimal transition path for controlling greenhouse gases," Resource and Energy Economics, Elsevier, vol. 15(1), pages 27-50, March.
    40. van der Werf, Edwin & Di Maria, Corrado, 2012. "Imperfect Environmental Policy and Polluting Emissions: The Green Paradox and Beyond," International Review of Environmental and Resource Economics, now publishers, vol. 6(2), pages 153-194, March.
    41. Gonzalez, Fidel, 2012. "Distributional effects of carbon taxes: The case of Mexico," Energy Economics, Elsevier, vol. 34(6), pages 2102-2115.
    42. Ricci, Olivia, 2012. "Providing adequate economic incentives for bioenergies with CO2 capture and geological storage," Energy Policy, Elsevier, vol. 44(C), pages 362-373.
    43. Goulder, Lawrence H. & Mathai, Koshy, 2000. "Optimal CO2 Abatement in the Presence of Induced Technological Change," Journal of Environmental Economics and Management, Elsevier, vol. 39(1), pages 1-38, January.
    44. Weber, Christopher L. & Matthews, H. Scott, 2008. "Quantifying the global and distributional aspects of American household carbon footprint," Ecological Economics, Elsevier, vol. 66(2-3), pages 379-391, June.
    45. G. Cornelis van Kooten & Clark S. Binkley & Gregg Delcourt, 1995. "Effect of Carbon Taxes and Subsidies on Optimal Forest Rotation Age and Supply of Carbon Services," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 365-374.
    46. Goulder, Lawrence H. & Schneider, Stephen H., 1999. "Induced technological change and the attractiveness of CO2 abatement policies," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 211-253, August.
    47. Herring, Horace, 2006. "Energy efficiency—a critical view," Energy, Elsevier, vol. 31(1), pages 10-20.
    48. Paavola, Jouni & Adger, W. Neil, 2006. "Fair adaptation to climate change," Ecological Economics, Elsevier, vol. 56(4), pages 594-609, April.
    49. van Vuuren, Detlef P. & de Vries, Bert & Eickhout, Bas & Kram, Tom, 2004. "Responses to technology and taxes in a simulated world," Energy Economics, Elsevier, vol. 26(4), pages 579-601, July.
    50. Cong, Rong-Gang, 2013. "An optimization model for renewable energy generation and its application in China: A perspective of maximum utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 94-103.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:wsi:apjorx:v:34:y:2017:i:01:n:s0217595917400048 is not listed on IDEAS
    2. repec:eee:appene:v:197:y:2017:i:c:p:270-278 is not listed on IDEAS
    3. repec:gam:jsusta:v:9:y:2017:i:10:p:1747-:d:113547 is not listed on IDEAS
    4. Wang, Linyuan & Zhao, Lin & Mao, Guozhu & Zuo, Jian & Du, Huibin, 2017. "Way to accomplish low carbon development transformation: A bibliometric analysis during 1995–2014," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 57-69.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:58:y:2016:i:c:p:297-310. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.