IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v55y2016icp51-57.html
   My bibliography  Save this article

Hub-and-spoke network design for container shipping along the Yangtze River

Author

Listed:
  • Zheng, Jianfeng
  • Yang, Dong

Abstract

Increasingly large, high-tonnage containerships are becoming a common sight on the Yangtze River, and the shipping network is being transformed accordingly. This paper reports the design of a hub-and-spoke network for a shipping company that is consistent with the characteristics of the Yangtze River. We first explore the economies of scale for container shipping by applying empirical data. Next, we propose a mixed-integer linear programming model, factoring in ship-operating and container-handling costs. We then conduct a numerical experiment and test the effectiveness of the model, and finally discuss the implications of hub-and-spoke shipping network design. The findings reported herein support the trends toward cargo concentration and port regionalization along the Yangtze River.

Suggested Citation

  • Zheng, Jianfeng & Yang, Dong, 2016. "Hub-and-spoke network design for container shipping along the Yangtze River," Journal of Transport Geography, Elsevier, vol. 55(C), pages 51-57.
  • Handle: RePEc:eee:jotrge:v:55:y:2016:i:c:p:51-57
    DOI: 10.1016/j.jtrangeo.2016.07.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692316303726
    Download Restriction: no

    References listed on IDEAS

    as
    1. Alumur, Sibel & Kara, Bahar Y., 2008. "Network hub location problems: The state of the art," European Journal of Operational Research, Elsevier, vol. 190(1), pages 1-21, October.
    2. Charles, Lopez, 2008. "Sea–river shipping competitiveness and its geographical market area for the Rhône–Saône corridor," Journal of Transport Geography, Elsevier, vol. 16(2), pages 100-116.
    3. Caris, An & Limbourg, Sabine & Macharis, Cathy & van Lier, Tom & Cools, Mario, 2014. "Integration of inland waterway transport in the intermodal supply chain: a taxonomy of research challenges," Journal of Transport Geography, Elsevier, vol. 41(C), pages 126-136.
    4. Frémont, Antoine & Franc, Pierre, 2010. "Hinterland transportation in Europe: Combined transport versus road transport," Journal of Transport Geography, Elsevier, vol. 18(4), pages 548-556.
    5. Kaiser, Ilza Machado & Bezerra, Barbara Stolte & Castro, Leslie Ivana Serino, 2013. "Is the environmental policies procedures a barrier to development of inland navigation and port management? A case of study in Brazil," Transportation Research Part A: Policy and Practice, Elsevier, vol. 47(C), pages 78-86.
    6. Liao, Chun-Hsiung & Lu, Chin-Shan & Tseng, Po-Hsing, 2011. "Carbon dioxide emissions and inland container transport in Taiwan," Journal of Transport Geography, Elsevier, vol. 19(4), pages 722-728.
    7. Zheng, Jianfeng & Meng, Qiang & Sun, Zhuo, 2014. "Impact analysis of maritime cabotage legislations on liner hub-and-spoke shipping network design," European Journal of Operational Research, Elsevier, vol. 234(3), pages 874-884.
    8. Veenstra, Albert & Notteboom, Theo, 2011. "The development of the Yangtze River container port system," Journal of Transport Geography, Elsevier, vol. 19(4), pages 772-781.
    9. Zheng, Jianfeng & Meng, Qiang & Sun, Zhuo, 2015. "Liner hub-and-spoke shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 32-48.
    10. Konings, Rob & Kreutzberger, Ekki & Maraš, Vladislav, 2013. "Major considerations in developing a hub-and-spoke network to improve the cost performance of container barge transport in the hinterland: the case of the port of Rotterdam," Journal of Transport Geography, Elsevier, vol. 29(C), pages 63-73.
    11. Meng, Qiang & Wang, Shuaian, 2011. "Liner shipping service network design with empty container repositioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(5), pages 695-708, September.
    12. Meng, Qiang & Wang, Xinchang, 2011. "Intermodal hub-and-spoke network design: Incorporating multiple stakeholders and multi-type containers," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 724-742, May.
    13. Sidney Gilman, 1999. "The Size Economies and Network Efficiency of Large Containerships," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 1(1), pages 39-59, September.
    14. Qiang Meng & Shuaian Wang & Henrik Andersson & Kristian Thun, 2014. "Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions," Transportation Science, INFORMS, vol. 48(2), pages 265-280, May.
    15. Wilmsmeier, Gordon & Monios, Jason & Lambert, Bruce, 2011. "The directional development of intermodal freight corridors in relation to inland terminals," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1379-1386.
    16. Jonkeren, Olaf & Jourquin, Bart & Rietveld, Piet, 2011. "Modal-split effects of climate change: The effect of low water levels on the competitive position of inland waterway transport in the river Rhine area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1007-1019.
    17. R. G. McLellan, 1997. "Bigger vessels: How big is too big?," Maritime Policy & Management, Taylor & Francis Journals, vol. 24(2), pages 193-211, January.
    18. Racunica, Illia & Wynter, Laura, 2005. "Optimal location of intermodal freight hubs," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 453-477, June.
    19. Imai, Akio & Nishimura, Etsuko & Papadimitriou, Stratos & Liu, Miaojia, 2006. "The economic viability of container mega-ships," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(1), pages 21-41, January.
    20. Zhongzhen Yang & Haiping Shi & Kang Chen & Hongli Bao, 2014. "Optimization of container liner network on the Yangtze River," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(1), pages 79-96, January.
    21. Albert W. Veenstra & Mo Zhang & Marcel Ludema, 2008. "The growth potential of container shipping on the Yangtze River," Maritime Policy & Management, Taylor & Francis Journals, vol. 35(6), pages 535-549, December.
    22. Wang, Chengjin & Ducruet, César, 2012. "New port development and global city making: emergence of the Shanghai–Yangshan multilayered gateway hub," Journal of Transport Geography, Elsevier, vol. 25(C), pages 58-69.
    23. Ronen, David, 1993. "Ship scheduling: The last decade," European Journal of Operational Research, Elsevier, vol. 71(3), pages 325-333, December.
    24. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    25. Antoine Frémont & Pierre Franc, 2010. "Hinterland transportation in Europe: Combined transport versus road transport," Post-Print hal-00542346, HAL.
    26. Ronen, David, 1983. "Cargo ships routing and scheduling: Survey of models and problems," European Journal of Operational Research, Elsevier, vol. 12(2), pages 119-126, February.
    27. Theo E. Notteboom * & Jean-Paul Rodrigue, 2005. "Port regionalization: towards a new phase in port development," Maritime Policy & Management, Taylor & Francis Journals, vol. 32(3), pages 297-313, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhijia Tan & Yadong Wang & Qiang Meng & Zhixue Liu, 2018. "Joint Ship Schedule Design and Sailing Speed Optimization for a Single Inland Shipping Service with Uncertain Dam Transit Time," Service Science, INFORMS, vol. 52(6), pages 1570-1588, December.
    2. Yang, Dong & Wang, Kelly Yujie & Xu, Hua & Zhang, Zhehui, 2017. "Path to a multilayered transshipment port system: How the Yangtze River bulk port system has evolved," Journal of Transport Geography, Elsevier, vol. 64(C), pages 54-64.
    3. Zhang, Ruiyou & Huang, Chao & Feng, Xuehao, 2020. "Empty container repositioning with foldable containers in a river transport network considering the limitations of bridge heights," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 197-213.
    4. Zhao, Yiran & Yang, Zhongzhen & Haralambides, Hercules, 2019. "Optimizing the transport of export containers along China's coronary artery: The Yangtze River," Journal of Transport Geography, Elsevier, vol. 77(C), pages 11-25.
    5. Tu, Ningwen & Adiputranto, Dimas & Fu, Xiaowen & Li, Zhi-Chun, 2018. "Shipping network design in a growth market: The case of Indonesia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 117(C), pages 108-125.
    6. Zheng, Jianfeng & Zhang, Wenlong & Qi, Jingwen & Wang, Shuaian, 2019. "Canal effects on a liner hub location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 230-247.
    7. Notteboom, Theo & Yang, Dong & Xu, Hua, 2020. "Container barge network development in inland rivers: A comparison between the Yangtze River and the Rhine River," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 587-605.
    8. Li, Feng & Yang, Dong & Wang, Shuaian & Weng, Jinxian, 2019. "Ship routing and scheduling problem for steel plants cluster alongside the Yangtze River," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 198-210.
    9. Peng, Peng & Yang, Yu & Cheng, Shifen & Lu, Feng & Yuan, Zimu, 2019. "Hub-and-spoke structure: Characterizing the global crude oil transport network with mass vessel trajectories," Energy, Elsevier, vol. 168(C), pages 966-974.
    10. Guo, Liquan & Yang, Dong & Yang, Zhongzhen, 2018. "Port integration method in multi-port regions (MPRs) based on the maximal social welfare of the external transport system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 243-257.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:55:y:2016:i:c:p:51-57. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.