IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v200y2025ics1366554525002200.html

Data-driven impact analysis of chokepoint on multi-scale maritime networks: A case study of the Taiwan Strait

Author

Listed:
  • Liang, Maohan
  • Cai, Yutong
  • Chen, Tianyi
  • Wang, Hua
  • Meng, Qiang

Abstract

Maritime chokepoints are crucial nodes in international supply chains, facilitating most of the global freight transport and the distribution of industrial raw materials and goods. However, these chokepoints are vulnerable to disruptions from severe weather, traffic accidents, and unpredictable factors, significantly impacting global maritime networks. Therefore, it is crucial to understand the role of chokepoints to improve the robustness of the global maritime network. This paper aims to assess the influence of a crucial maritime chokepoint, with a specific focus on the Taiwan Strait, and its effects on the global maritime network. Specifically, five maritime networks with different scales are constructed based on massive global Automatic Identification System (AIS) data. The Taiwan Strait is selected as an important maritime chokepoint in the multi-scale networks. Then, the dependence of the Taiwan Strait on various ports and economies is analyzed by nine selected evaluation metrics. Finally, this study thoroughly analyzes the impact of the Taiwan Strait for multiscale maritime networks extracted from AIS. The Taiwan Strait has been subdivided and analyzed to reveal the important areas of maritime traffic flow within the Taiwan Strait. The global maritime traffic flow analytical results demonstrate the huge influence of the Taiwan Strait on Chinese ports and Asian economies.

Suggested Citation

  • Liang, Maohan & Cai, Yutong & Chen, Tianyi & Wang, Hua & Meng, Qiang, 2025. "Data-driven impact analysis of chokepoint on multi-scale maritime networks: A case study of the Taiwan Strait," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:transe:v:200:y:2025:i:c:s1366554525002200
    DOI: 10.1016/j.tre.2025.104179
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554525002200
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2025.104179?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Liu, ChengCheng & Lian, Feng & Yang, Zhongzhen, 2021. "Comparing the minimal costs of Arctic container shipping between China and Europe: A network schemes perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    2. Zhu, Shengda & Fu, Xiaowen & Bell, Michael G.H., 2021. "Container shipping line port choice patterns in East Asia the effects of port affiliation and spatial dependence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    3. Dirzka, Christopher & Acciaro, Michele, 2022. "Global shipping network dynamics during the COVID-19 pandemic's initial phases," Journal of Transport Geography, Elsevier, vol. 99(C).
    4. Anthony Sardain & Erik Sardain & Brian Leung, 2019. "Global forecasts of shipping traffic and biological invasions to 2050," Nature Sustainability, Nature, vol. 2(4), pages 274-282, April.
    5. Tagawa, Hoshi & Kawasaki, Tomoya & Hanaoka, Shinya, 2022. "Evaluation of international maritime network configuration and impact of port cooperation on port hierarchy," Transport Policy, Elsevier, vol. 123(C), pages 14-24.
    6. Cao, Xinhu & Lam, Jasmine Siu Lee, 2019. "A fast reaction-based port vulnerability assessment: Case of Tianjin Port explosion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 11-33.
    7. Mengqiao Xu & Qian Pan & Alessandro Muscoloni & Haoxiang Xia & Carlo Vittorio Cannistraci, 2020. "Modular gateway-ness connectivity and structural core organization in maritime network science," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    8. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    9. César Ducruet & Céline Rozenblat & Faraz Zaidi, 2010. "Ports in multi-level maritime networks : Evidence from the Atlantic (1996-2006)," Post-Print hal-03247133, HAL.
    10. Peng, Peng & Poon, Jessie P.H. & Yang, Yu & Lu, Feng & Cheng, Shifen, 2019. "Global oil traffic network and diffusion of influence among ports using real time data," Energy, Elsevier, vol. 172(C), pages 333-342.
    11. repec:hal:journl:hal-04295066 is not listed on IDEAS
    12. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    13. César Ducruet & Theo Notteboom, 2012. "The worldwide maritime network of container shipping : Spatial structure and regional dynamics," Post-Print hal-03246962, HAL.
    14. Hu, Yihong & Zhu, Daoli, 2009. "Empirical analysis of the worldwide maritime transportation network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(10), pages 2061-2071.
    15. Ducruet, César, 2020. "The geography of maritime networks: A critical review," Journal of Transport Geography, Elsevier, vol. 88(C).
    16. Liehui Wang & Y. Zhu & César Ducruet & Mattia Bunel & Y.Y. Lau, 2018. "From hierarchy to networking : The evolution of the ’21st century Maritime Silk Road’ container shipping system," Post-Print hal-03246382, HAL.
    17. Naima Saeed & Kevin Cullinane & Sigbjørn Sødal, 2021. "Exploring the relationships between maritime connectivity, international trade and domestic production," Maritime Policy & Management, Taylor & Francis Journals, vol. 48(4), pages 497-511, May.
    18. Xu, Yang & Peng, Peng & Lu, Feng & Claramunt, Christophe, 2024. "Uncovering the multiplex network of global container shipping: Insights from shipping companies," Journal of Transport Geography, Elsevier, vol. 120(C).
    19. Zhang, Liye & Meng, Qiang & Fang Fwa, Tien, 2019. "Big AIS data based spatial-temporal analyses of ship traffic in Singapore port waters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 287-304.
    20. Weihua Lei & Luiz G. A. Alves & Luís A. Nunes Amaral, 2022. "Forecasting the evolution of fast-changing transportation networks using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    21. Asadabadi, Ali & Miller-Hooks, Elise, 2020. "Maritime port network resiliency and reliability through co-opetition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 137(C).
    22. Li, Wenjie & Asadabadi, Ali & Miller-Hooks, Elise, 2022. "Enhancing resilience through port coalitions in maritime freight networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 1-23.
    23. César Ducruet, 2020. "The geography of maritime networks : a critical review," Post-Print hal-03246890, HAL.
    24. Ducruet, César & Rozenblat, Céline & Zaidi, Faraz, 2010. "Ports in multi-level maritime networks: evidence from the Atlantic (1996–2006)," Journal of Transport Geography, Elsevier, vol. 18(4), pages 508-518.
    25. Bai, Xiwen & Ma, Zhongjun & Zhou, Yaoming, 2023. "Data-driven static and dynamic resilience assessment of the global liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    26. Zheng, Jianfeng & Yang, Dong, 2016. "Hub-and-spoke network design for container shipping along the Yangtze River," Journal of Transport Geography, Elsevier, vol. 55(C), pages 51-57.
    27. Antoine Allard & M. Ángeles Serrano & Guillermo García-Pérez & Marián Boguñá, 2017. "The geometric nature of weights in real complex networks," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    28. Cheung, Kam-Fung & Bell, Michael G.H. & Pan, Jing-Jing & Perera, Supun, 2020. "An eigenvector centrality analysis of world container shipping network connectivity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    29. Tovar, Beatriz & Wall, Alan, 2022. "The relationship between port-level maritime connectivity and efficiency," Journal of Transport Geography, Elsevier, vol. 98(C).
    30. Pradhan, Priodyuti & C.U., Angeliya & Jalan, Sarika, 2020. "Principal eigenvector localization and centrality in networks: Revisited," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    31. Liehui Wang & Yan Zhu & Cesar Ducruet & Mattia Bunel & Yui-yip Lau, 2018. "From hierarchy to networking: the evolution of the “twenty-first-century Maritime Silk Road” container shipping system," Transport Reviews, Taylor & Francis Journals, vol. 38(4), pages 416-435, July.
    32. Chen, Tianyi & Wang, Hua & Cai, Yutong & Liang, Maohan & Meng, Qiang, 2025. "Exploring key factors for long-term vessel incident risk prediction," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    33. Naima Saeed & Kevin Cullinane & Victor Gekara & Prem Chhetri, 2021. "Reconfiguring maritime networks due to the Belt and Road Initiative: impact on bilateral trade flows," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(3), pages 381-400, September.
    34. David L. Alderson & Daniel Funk & Ralucca Gera, 2020. "Analysis of the global maritime transportation system as a layered network," Journal of Transportation Security, Springer, vol. 13(3), pages 291-325, December.
    35. Zuzanna Kosowska-Stamirowska, 2020. "Network effects govern the evolution of maritime trade," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(23), pages 12719-12728, June.
    36. César Ducruet & Theo E. Notteboom, 2012. "The worldwide maritime network of container shipping: Spatial structure and regional dynamics," Post-Print halshs-00538051, HAL.
    37. César Ducruet, 2020. "The geography of maritime networks: A critical review," Post-Print halshs-02922543, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. César Ducruet, 2023. "Shipping network analysis: state-of-the-art and application to the global financial crisis," Post-Print halshs-04588340, HAL.
    2. Wu, Jiaxin & Lu, Jing & Zhang, Lingye & Fan, Hanwen, 2024. "Spatial heterogeneity among different-sized port communities in directed-weighted global liner shipping network," Journal of Transport Geography, Elsevier, vol. 114(C).
    3. Nadia M. Trent & Johan W. Joubert & Minh Kieu, 2025. "The Policy Potential of Monitoring Market Proximal Maritime Connectivity Over Time: The Case of Aotearoa New Zealand," Networks and Spatial Economics, Springer, vol. 25(1), pages 67-94, March.
    4. Yap, Wei Yim & Hsieh, Cheng-Hsien & Lee, Paul Tae-Woo, 2023. "Shipping connectivity data analytics: Implications for maritime policy," Transport Policy, Elsevier, vol. 132(C), pages 112-127.
    5. Marc-Antoine Faure & Bárbara Polo Martin & Fabio Cremaschini & César Ducruet, 2024. "Shipping Trade and Geopolitical Turmoils: The Case of the Ukrainian Maritime Network," EconomiX Working Papers 2024-24, University of Paris Nanterre, EconomiX.
    6. Bai, Xiwen & Ma, Zhongjun & Zhou, Yaoming, 2023. "Data-driven static and dynamic resilience assessment of the global liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    7. Tocchi, Daniela & Sys, Christa & Papola, Andrea & Tinessa, Fiore & Simonelli, Fulvio & Marzano, Vittorio, 2022. "Hypergraph-based centrality metrics for maritime container service networks: A worldwide application," Journal of Transport Geography, Elsevier, vol. 98(C).
    8. César Ducruet, 2020. "The geography of maritime networks: A critical review," Post-Print halshs-02922543, HAL.
    9. Ge, Jiawei & fu, Qiang & Zhang, Qiang & Wan, Zheng, 2022. "Regional operating patterns of world container shipping network: A perspective from motif identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    10. Dirzka, Christopher & Acciaro, Michele, 2022. "Global shipping network dynamics during the COVID-19 pandemic's initial phases," Journal of Transport Geography, Elsevier, vol. 99(C).
    11. Nicanor García Álvarez & Belarmino Adenso-Díaz & Laura Calzada-Infante, 2021. "Maritime Traffic as a Complex Network: a Systematic Review," Networks and Spatial Economics, Springer, vol. 21(2), pages 387-417, June.
    12. Guo, Shu & Lyu, Jing & Zhu, Xuebin & Fan, Hanwen, 2025. "Multi-feature fusion for the evaluation of strategic nodes and regional importance in maritime networks," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    13. Zhang, Qiang & Pu, Shunhao & Luo, Lihua & Liu, Zhichao & Xu, Jie, 2022. "Revisiting important ports in container shipping networks: A structural hole-based approach," Transport Policy, Elsevier, vol. 126(C), pages 239-248.
    14. Jin, Lianjie & Chen, Jing & Chen, Zilin & Sun, Xiangjun & Yu, Bin, 2022. "Impact of COVID-19 on China's international liner shipping network based on AIS data," Transport Policy, Elsevier, vol. 121(C), pages 90-99.
    15. Wu, Di & Yu, Changqing & Zhao, Yannan & Guo, Jialun, 2024. "Changes in vulnerability of global container shipping networks before and after the COVID-19 pandemic," Journal of Transport Geography, Elsevier, vol. 114(C).
    16. Gabriel Figueiredo De Oliveira & Alexandra Schaffar & Pierre Cariou & Jason Monios, 2021. "Convergence and growth traps in container ports," Post-Print hal-05244114, HAL.
    17. Oliveira, Gabriel Figueiredo de & Schaffar, Alexandra & Cariou, Pierre & Monios, Jason, 2021. "Convergence and growth traps in container ports," Transport Policy, Elsevier, vol. 110(C), pages 170-180.
    18. Sugimura, Yoshihisa & Akakura, Yasuhiro & Yotsushima, Tatsuki & Kawasaki, Tomoya, 2023. "Evaluation of Japanese port policies through network analysis," Transport Policy, Elsevier, vol. 135(C), pages 59-70.
    19. Ducruet, César & Itoh, Hidekazu, 2022. "The spatial determinants of innovation diffusion: Evidence from global shipping networks," Journal of Transport Geography, Elsevier, vol. 101(C).
    20. Xin, Xuri & Cao, Yuhao & Jarumaneeroj, Pisit & Yang, Zaili, 2025. "Vulnerability assessment of International Container Shipping Networks under national-level restriction policies," Transport Policy, Elsevier, vol. 167(C), pages 191-209.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:200:y:2025:i:c:s1366554525002200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.