IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v192y2024ics1366554524003478.html
   My bibliography  Save this article

Improved ADMM-based approach for optimizing intercity express transportation networks: A novel dual decomposition strategy with partial retention of coupling constraints

Author

Listed:
  • Chi, Jushang
  • He, Shiwei
  • Zhang, Yongxiang

Abstract

The rapid expansion of express delivery volume necessitates the development of logistics centers and the optimization of parcel transportation routes between cities within an extensive express transportation network. This study addresses the intercity express transportation network optimization problem (IETNP), which integrates the hub location problem with the multi-commodity flow problem. An integer linear programming model is introduced to represent the IETNP. To leverage the decomposable structure of the IETNP model, an improved Alternating direction method of multipliers (ADMM)-based algorithm is developed for solving the IETNP. A novel dual decomposition strategy is proposed to mitigate the negative effects of numerous coupling constraints on achieving high-quality upper-bound solutions. This strategy, incorporating penalty-term-reduction and multiplier-replacement methods, diminishes the number of penalty terms and the search space, thus enhancing computational efficiency while maintaining solution quality. A Lagrangian relaxation (LR)-based algorithm is employed to generate lower-bound solutions that assess the quality of the upper-bound solutions. Auxiliary constraints are integrated into the dualized formulation to enhance these lower-bound solutions. The effectiveness and efficiency of the improved ADMM-based algorithm are validated using over 100 artificial instances with 10–500 nodes and a realistic instance involving 338 cities. Comparative analysis with an off-the-shelf solver and existing ADMM- and LR-based algorithms reveals that the improved ADMM-based algorithm reduced the upper-bound values by 11.44% on average and by up to 22.09%.

Suggested Citation

  • Chi, Jushang & He, Shiwei & Zhang, Yongxiang, 2024. "Improved ADMM-based approach for optimizing intercity express transportation networks: A novel dual decomposition strategy with partial retention of coupling constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:transe:v:192:y:2024:i:c:s1366554524003478
    DOI: 10.1016/j.tre.2024.103756
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524003478
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103756?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zetina, Carlos Armando & Contreras, Ivan & Cordeau, Jean-François & Nikbakhsh, Ehsan, 2017. "Robust uncapacitated hub location," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 393-410.
    2. Serper, Elif Zeynep & Alumur, Sibel A., 2016. "The design of capacitated intermodal hub networks with different vehicle types," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 51-65.
    3. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Pirayesh, Amir & Karimi-Mamaghan, Amir Mohammad & Irani, Hassan, 2020. "Hub-and-spoke network design under congestion: A learning based metaheuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    4. Tiwari, Richa & Jayaswal, Sachin & Sinha, Ankur, 2021. "Competitive hub location problem: Model and solution approaches," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 237-261.
    5. Marshall L. Fisher, 1981. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 27(1), pages 1-18, January.
    6. Gaggero, Alberto A. & Luttmann, Alexander, 2023. "The determinants of hidden-city ticketing: Competition, hub-and-spoke networks, and advance-purchase requirements," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    7. Quesada Perez, Jose Miguel & Tancrez, Jean-Sebastien & Lange, Jean-Charles, 2020. "Express Shipment Service Network Design with Complex Routes," LIDAM Reprints CORE 3115, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Meng, Lingyun & Zhou, Xuesong, 2019. "An integrated train service plan optimization model with variable demand: A team-based scheduling approach with dual cost information in a layered network," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 1-28.
    9. Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
    10. Boland, Natashia & Krishnamoorthy, Mohan & Ernst, Andreas T. & Ebery, Jamie, 2004. "Preprocessing and cutting for multiple allocation hub location problems," European Journal of Operational Research, Elsevier, vol. 155(3), pages 638-653, June.
    11. Zhang, Yongxiang & Peng, Qiyuan & Lu, Gongyuan & Zhong, Qingwei & Yan, Xu & Zhou, Xuesong, 2022. "Integrated line planning and train timetabling through price-based cross-resolution feedback mechanism," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 240-277.
    12. Yidong Wang & Rui Song & Shiwei He & Zilong Song & Jushang Chi, 2023. "Integrated train routing and timetabling problem in a multi-station high-speed railway hub," International Journal of Rail Transportation, Taylor & Francis Journals, vol. 11(4), pages 598-637, July.
    13. Correia, Isabel & Nickel, Stefan & Saldanha-da-Gama, Francisco, 2018. "A stochastic multi-period capacitated multiple allocation hub location problem: Formulation and inequalities," Omega, Elsevier, vol. 74(C), pages 122-134.
    14. Wang, Congke & Liu, Yankui & Yang, Guoqing, 2023. "Adaptive distributionally robust hub location and routing problem with a third-party logistics strategy," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    15. AkartunalI, Kerem & Miller, Andrew J., 2009. "A heuristic approach for big bucket multi-level production planning problems," European Journal of Operational Research, Elsevier, vol. 193(2), pages 396-411, March.
    16. Zhang, X. & Liu, X., 2022. "A two-stage robust model for express service network design with surging demand," European Journal of Operational Research, Elsevier, vol. 299(1), pages 154-167.
    17. James F. Campbell, 1996. "Hub Location and the p -Hub Median Problem," Operations Research, INFORMS, vol. 44(6), pages 923-935, December.
    18. Zhan, Shuguang & Wong, S.C. & Shang, Pan & Peng, Qiyuan & Xie, Jiemin & Lo, S.M., 2021. "Integrated railway timetable rescheduling and dynamic passenger routing during a complete blockage," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 86-123.
    19. Zhang, Xuemei & Zhou, Gengui & Cao, Jian & Wu, Anqi, 2020. "Evolving strategies of e-commerce and express delivery enterprises with public supervision," Research in Transportation Economics, Elsevier, vol. 80(C).
    20. Mengshi Lu & Lun Ran & Zuo-Jun Max Shen, 2015. "Reliable Facility Location Design Under Uncertain Correlated Disruptions," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 445-455, October.
    21. Zheng, Jianfeng & Meng, Qiang & Sun, Zhuo, 2014. "Impact analysis of maritime cabotage legislations on liner hub-and-spoke shipping network design," European Journal of Operational Research, Elsevier, vol. 234(3), pages 874-884.
    22. Wu, Jiang & Zhang, Pei-wen & Wang, Yu & Shi, Jim (Junmin), 2022. "Integrated aviation model and metaheuristic algorithm for hub-and-spoke network design and airline fleet planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    23. Hao Shen & Yong Liang & Zuo-Jun Max Shen, 2021. "Reliable Hub Location Model for Air Transportation Networks Under Random Disruptions," Manufacturing & Service Operations Management, INFORMS, vol. 23(2), pages 388-406, March.
    24. Cynthia Barnhart & Christopher A. Hane & Pamela H. Vance, 2000. "Using Branch-and-Price-and-Cut to Solve Origin-Destination Integer Multicommodity Flow Problems," Operations Research, INFORMS, vol. 48(2), pages 318-326, April.
    25. Zheng, Jianfeng & Yang, Dong, 2016. "Hub-and-spoke network design for container shipping along the Yangtze River," Journal of Transport Geography, Elsevier, vol. 55(C), pages 51-57.
    26. Ebery, Jamie & Krishnamoorthy, Mohan & Ernst, Andreas & Boland, Natashia, 2000. "The capacitated multiple allocation hub location problem: Formulations and algorithms," European Journal of Operational Research, Elsevier, vol. 120(3), pages 614-631, February.
    27. Karsten, Christian Vad & Pisinger, David & Ropke, Stefan & Brouer, Berit Dangaard, 2015. "The time constrained multi-commodity network flow problem and its application to liner shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 122-138.
    28. Quesada Pérez, José Miguel & Lange, Jean-Charles & Tancrez, Jean-Sébastien, 2018. "A multi-hub Express Shipment Service Network Design model with flexible hub assignment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 120(C), pages 116-131.
    29. José Miguel Quesada Perez & Jean-Charles Lange & Jean-Sébastien Tancrez, 2018. "A multi-hub express shipment service network design model with flexible hub assignment," LIDAM Reprints CORE 3029, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    30. Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2020. "Integrating first-mile pickup and last-mile delivery on shared vehicle routes for efficient urban e-commerce distribution," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 26-62.
    31. Madani, Seyed Reza & Shahandeh Nookabadi, Ali & Hejazi, Seyed Reza, 2018. "A bi-objective, reliable single allocation p-hub maximal covering location problem: Mathematical formulation and solution approach," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 118-136.
    32. Yao, Yu & Zhu, Xiaoning & Dong, Hongyu & Wu, Shengnan & Wu, Hailong & Carol Tong, Lu & Zhou, Xuesong, 2019. "ADMM-based problem decomposition scheme for vehicle routing problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 156-174.
    33. Tong, Lu & Zhou, Xuesong & Miller, Harvey J., 2015. "Transportation network design for maximizing space–time accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 555-576.
    34. Lin, Cheng-Chang, 2010. "The integrated secondary route network design model in the hierarchical hub-and-spoke network for dual express services," International Journal of Production Economics, Elsevier, vol. 123(1), pages 20-30, January.
    35. Martin, Florian & Hemmelmayr, Vera C. & Wakolbinger, Tina, 2021. "Integrated express shipment service network design with customer choice and endogenous delivery time restrictions," European Journal of Operational Research, Elsevier, vol. 294(2), pages 590-603.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Siqiao & Zhu, Xiaoning & Shang, Pan & Li, Tianqi & Liu, Wenqian, 2023. "Optimizing a shared freight and passenger high-speed railway system: A multi-commodity flow formulation with Benders decomposition solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 1-31.
    2. Wang, Entai & Yang, Lixing & Yin, Jiateng & Zhang, Jinlei & Gao, Ziyou, 2024. "Passenger-oriented rolling stock scheduling in the metro system with multiple depots: Network flow based approaches," Transportation Research Part B: Methodological, Elsevier, vol. 180(C).
    3. Domínguez-Bravo, Carmen-Ana & Fernández, Elena & Lüer-Villagra, Armin, 2024. "Hub location with congestion and time-sensitive demand," European Journal of Operational Research, Elsevier, vol. 316(3), pages 828-844.
    4. Ghaffarinasab, Nader & Kara, Bahar Y., 2022. "A conditional β-mean approach to risk-averse stochastic multiple allocation hub location problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    5. Zhang, Yongxiang & Peng, Qiyuan & Lu, Gongyuan & Zhong, Qingwei & Yan, Xu & Zhou, Xuesong, 2022. "Integrated line planning and train timetabling through price-based cross-resolution feedback mechanism," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 240-277.
    6. Hu, Lu & Zhu, Juan Xiu & Wang, Yuan & Lee, Loo Hay, 2018. "Joint design of fleet size, hub locations, and hub capacities for third-party logistics networks with road congestion constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 568-588.
    7. Marc Janschekowitz & Gita Taherkhani & Sibel A. Alumur & Stefan Nickel, 2023. "An alternative approach to address uncertainty in hub location," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(2), pages 359-393, June.
    8. Feng, Tao & Lusby, Richard M. & Zhang, Yongxiang & Tao, Siyu & Zhang, Bojian & Peng, Qiyuan, 2024. "A branch-and-price algorithm for integrating urban rail crew scheduling and rostering problems," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    9. Islem Snoussi & Nadia Hamani & Nassim Mrabti & Lyes Kermad, 2021. "A Robust Mixed-Integer Linear Programming Model for Sustainable Collaborative Distribution," Mathematics, MDPI, vol. 9(18), pages 1-27, September.
    10. Lu, Jiawei & Nie, Qinghui & Mahmoudi, Monirehalsadat & Ou, Jishun & Li, Chongnan & Zhou, Xuesong Simon, 2022. "Rich arc routing problem in city logistics: Models and solution algorithms using a fluid queue-based time-dependent travel time representation," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 143-182.
    11. Wang, Congke & Liu, Yankui & Yang, Guoqing, 2023. "Adaptive distributionally robust hub location and routing problem with a third-party logistics strategy," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    12. Yıldız, Barış & Savelsbergh, Martin, 2022. "Optimizing package express operations in China," European Journal of Operational Research, Elsevier, vol. 300(1), pages 320-335.
    13. Tian, Xiaopeng & Niu, Huimin, 2020. "Optimization of demand-oriented train timetables under overtaking operations: A surrogate-dual-variable column generation for eliminating indivisibility," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 143-173.
    14. Xudong Diao & Ai Gao & Xin Jin & Hui Chen, 2022. "A Layer-Based Relaxation Approach for Service Network Design," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    15. Dhyani, Sneha & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2019. "Alternate Second Order Conic Programming Reformulations for Hub Location with Capacity Selection under Demand," IIMA Working Papers WP 2018-12-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    16. Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
    17. Samir Elhedhli & Huyu Wu, 2010. "A Lagrangean Heuristic for Hub-and-Spoke System Design with Capacity Selection and Congestion," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 282-296, May.
    18. Hu, Qing-Mi & Hu, Shaolong & Wang, Jian & Li, Xiaoping, 2021. "Stochastic single allocation hub location problems with balanced utilization of hub capacities," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 204-227.
    19. Tianqi Liu & Francisco Saldanha-da-Gama & Shuming Wang & Yuchen Mao, 2022. "Robust Stochastic Facility Location: Sensitivity Analysis and Exact Solution," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2776-2803, September.
    20. Zhang, Chuntian & Gao, Yuan & Cacchiani, Valentina & Yang, Lixing & Gao, Ziyou, 2023. "Train rescheduling for large-scale disruptions in a large-scale railway network," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:192:y:2024:i:c:s1366554524003478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.