IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v120y2018icp116-131.html
   My bibliography  Save this article

A multi-hub Express Shipment Service Network Design model with flexible hub assignment

Author

Listed:
  • Quesada Pérez, José Miguel
  • Lange, Jean-Charles
  • Tancrez, Jean-Sébastien

Abstract

The Express Shipment Service Network Design problem consists in designing a network of flights that, at minimum cost, enables the overnight transportation of packages in vast regions. In this paper, we study its multi-hub version and develop a model in which the allocation of packages to hubs is a decision, unlike state-of-the-art approaches that suppose a predetermined allocation. Our formulation is strengthened with three families of valid inequalities and with improved forcing constraints. Extensive numerical experiments using instances provided by FedEx Express Europe show the efficiency of our flexible hub assignment model, particularly compared to fixed hub assignment approaches.

Suggested Citation

  • Quesada Pérez, José Miguel & Lange, Jean-Charles & Tancrez, Jean-Sébastien, 2018. "A multi-hub Express Shipment Service Network Design model with flexible hub assignment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 120(C), pages 116-131.
  • Handle: RePEc:eee:transe:v:120:y:2018:i:c:p:116-131
    DOI: 10.1016/j.tre.2018.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136655451830557X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2018.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cynthia Barnhart & Rina R. Schneur, 1996. "Air Network Design for Express Shipment Service," Operations Research, INFORMS, vol. 44(6), pages 852-863, December.
    2. Paraskevopoulos, Dimitris C. & Gürel, Sinan & Bektaş, Tolga, 2016. "The congested multicommodity network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 166-187.
    3. Andrew P. Armacost & Cynthia Barnhart & Keith A. Ware & Alysia M. Wilson, 2004. "UPS Optimizes Its Air Network," Interfaces, INFORMS, vol. 34(1), pages 15-25, February.
    4. T. L. Magnanti & R. T. Wong, 1984. "Network Design and Transportation Planning: Models and Algorithms," Transportation Science, INFORMS, vol. 18(1), pages 1-55, February.
    5. Teypaz, Nicolas & Schrenk, Susann & Cung, Van-Dat, 2010. "A decomposition scheme for large-scale Service Network Design with asset management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(1), pages 156-170, January.
    6. Yogesh K. Agarwal, 2002. "Design of Capacitated Multicommodity Networks with Multiple Facilities," Operations Research, INFORMS, vol. 50(2), pages 333-344, April.
    7. Daeki Kim & Cynthia Barnhart & Keith Ware & Gregory Reinhardt, 1999. "Multimodal Express Package Delivery: A Service Network Design Application," Transportation Science, INFORMS, vol. 33(4), pages 391-407, November.
    8. Yang, Kai & Yang, Lixing & Gao, Ziyou, 2016. "Planning and optimization of intermodal hub-and-spoke network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 248-266.
    9. Kuby, Michael J. & Gray, Robert Gordon, 1993. "The hub network design problem with stopovers and feeders: The case of Federal Express," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(1), pages 1-12, January.
    10. Meuffels, W.J.M., 2015. "The design of road and air networks for express service providers," Other publications TiSEM d3266cb8-bc55-41be-adc7-4, Tilburg University, School of Economics and Management.
    11. Hanif D. Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "An Integrated Approach for Airline Flight Selection and Timing, Fleet Assignment, and Aircraft Routing," Transportation Science, INFORMS, vol. 47(4), pages 455-476, November.
    12. Crainic, Teodor Gabriel, 2000. "Service network design in freight transportation," European Journal of Operational Research, Elsevier, vol. 122(2), pages 272-288, April.
    13. Andrew P. Armacost & Cynthia Barnhart & Keith A. Ware, 2002. "Composite Variable Formulations for Express Shipment Service Network Design," Transportation Science, INFORMS, vol. 36(1), pages 1-20, February.
    14. Tong, Lu & Zhou, Xuesong & Miller, Harvey J., 2015. "Transportation network design for maximizing space–time accessibility," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 555-576.
    15. Hein Fleuren & Chris Goossens & Marco Hendriks & Marie-Christine Lombard & Ineke Meuffels & John Poppelaars, 2013. "Supply Chain–Wide Optimization at TNT Express," Interfaces, INFORMS, vol. 43(1), pages 5-20, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xudong Diao & Ai Gao & Xin Jin & Hui Chen, 2022. "A Layer-Based Relaxation Approach for Service Network Design," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    2. Li, Siqiao & Zhu, Xiaoning & Shang, Pan & Li, Tianqi & Liu, Wenqian, 2023. "Optimizing a shared freight and passenger high-speed railway system: A multi-commodity flow formulation with Benders decomposition solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 1-31.
    3. Martin, Florian & Hemmelmayr, Vera C. & Wakolbinger, Tina, 2021. "Integrated express shipment service network design with customer choice and endogenous delivery time restrictions," European Journal of Operational Research, Elsevier, vol. 294(2), pages 590-603.
    4. Wang, Zujian & Qi, Mingyao, 2019. "Service network design considering multiple types of services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 1-14.
    5. Yıldız, Barış & Savelsbergh, Martin, 2022. "Optimizing package express operations in China," European Journal of Operational Research, Elsevier, vol. 300(1), pages 320-335.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yıldız, Barış & Savelsbergh, Martin, 2022. "Optimizing package express operations in China," European Journal of Operational Research, Elsevier, vol. 300(1), pages 320-335.
    2. Meuffels, W.J.M., 2015. "The design of road and air networks for express service providers," Other publications TiSEM d3266cb8-bc55-41be-adc7-4, Tilburg University, School of Economics and Management.
    3. Ahmad Baubaid & Natashia Boland & Martin Savelsbergh, 2021. "The Value of Limited Flexibility in Service Network Designs," Transportation Science, INFORMS, vol. 55(1), pages 52-74, 1-2.
    4. Louwerse, I. & Mijnarends, J. & Meuffels, I. & Huisman, D. & Fleuren, H.A., 2012. "Scheduling Movements in the Network of an Express Service Provider," Econometric Institute Research Papers EI 2012-08, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Naga V. C. Gudapati & Enrico Malaguti & Michele Monaci, 2022. "Network Design with Service Requirements: Scaling-up the Size of Solvable Problems," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2571-2582, September.
    6. Andrew P. Armacost & Cynthia Barnhart & Keith A. Ware, 2002. "Composite Variable Formulations for Express Shipment Service Network Design," Transportation Science, INFORMS, vol. 36(1), pages 1-20, February.
    7. Jianjun Zhang & Ou Tang & Jin Zhao & Jiazhen Huo & Yonggang Xia, 2013. "CPEL Redesigns Its Land Express Network," Interfaces, INFORMS, vol. 43(3), pages 221-231, May-June.
    8. G. Guastaroba & M. G. Speranza & D. Vigo, 2016. "Intermediate Facilities in Freight Transportation Planning: A Survey," Transportation Science, INFORMS, vol. 50(3), pages 763-789, August.
    9. Anantaram Balakrishnan & Gang Li & Prakash Mirchandani, 2017. "Optimal Network Design with End-to-End Service Requirements," Operations Research, INFORMS, vol. 65(3), pages 729-750, June.
    10. C S Sung & S H Song, 2003. "Integrated service network design for a cross-docking supply chain network," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(12), pages 1283-1295, December.
    11. Wang, Zujian & Qi, Mingyao, 2019. "Service network design considering multiple types of services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 1-14.
    12. Li, Xiangyong & Ding, Yi & Pan, Kai & Jiang, Dapei & Aneja, Y.P., 2020. "Single-path service network design problem with resource constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    13. Li, Xiangyong & Wei, Kai & Aneja, Y.P. & Tian, Peng, 2017. "Design-balanced capacitated multicommodity network design with heterogeneous assets," Omega, Elsevier, vol. 67(C), pages 145-159.
    14. Jansen, Benjamin & Swinkels, Pieter C. J. & Teeuwen, Geert J. A. & van Antwerpen de Fluiter, Babette & Fleuren, Hein A., 2004. "Operational planning of a large-scale multi-modal transportation system," European Journal of Operational Research, Elsevier, vol. 156(1), pages 41-53, July.
    15. Jardar Andersen & Marielle Christiansen & Teodor Gabriel Crainic & Roar Grønhaug, 2011. "Branch and Price for Service Network Design with Asset Management Constraints," Transportation Science, INFORMS, vol. 45(1), pages 33-49, February.
    16. Xin Wang & Teodor Gabriel Crainic & Stein W. Wallace, 2019. "Stochastic Network Design for Planning Scheduled Transportation Services: The Value of Deterministic Solutions," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 153-170, February.
    17. Wang, Zujian & Qi, Mingyao & Cheng, Chun & Zhang, Canrong, 2019. "A hybrid algorithm for large-scale service network design considering a heterogeneous fleet," European Journal of Operational Research, Elsevier, vol. 276(2), pages 483-494.
    18. Lai, M. F. & Lo, Hong K., 2004. "Ferry service network design: optimal fleet size, routing, and scheduling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(4), pages 305-328, May.
    19. Andrew P. Armacost & Cynthia Barnhart & Keith A. Ware & Alysia M. Wilson, 2004. "UPS Optimizes Its Air Network," Interfaces, INFORMS, vol. 34(1), pages 15-25, February.
    20. Martin, Florian & Hemmelmayr, Vera C. & Wakolbinger, Tina, 2021. "Integrated express shipment service network design with customer choice and endogenous delivery time restrictions," European Journal of Operational Research, Elsevier, vol. 294(2), pages 590-603.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:120:y:2018:i:c:p:116-131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.