IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v34y2004i1p15-25.html
   My bibliography  Save this article

UPS Optimizes Its Air Network

Author

Listed:
  • Andrew P. Armacost

    (Department of Management, US Air Force Academy, 2354 Fairchild Drive, Suite 6J100, Colorado Springs, Colorado 80920)

  • Cynthia Barnhart

    (Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 1-229, Cambridge, Massachusetts 02139)

  • Keith A. Ware

    (UPS Operations Research Group, 1400 Hurstbourne Parkway, Louisville, Kentucky 40223)

  • Alysia M. Wilson

    (UPS Operations Research Group, 1400 Hurstbourne Parkway, Louisville, Kentucky 40223)

Abstract

Operations research specialists at UPS and the Massachusetts Institute of Technology (MIT) created a system to optimize the design of service networks for delivering express packages. The system simultaneously determines aircraft routes, fleet assignments, and package routings to ensure overnight delivery at minimal cost. It has become central to the UPS planning process, fundamentally transforming the process and the underlying planning assumptions. Planners now use the system’s solutions and insights to improve plans. UPS management credits the system with identifying operational changes that have saved over $87 million between 2000 and 2002. Anticipated future savings are expected to be in the hundreds of millions of dollars.

Suggested Citation

  • Andrew P. Armacost & Cynthia Barnhart & Keith A. Ware & Alysia M. Wilson, 2004. "UPS Optimizes Its Air Network," Interfaces, INFORMS, vol. 34(1), pages 15-25, February.
  • Handle: RePEc:inm:orinte:v:34:y:2004:i:1:p:15-25
    DOI: 10.1287/inte.1030.0060
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.1030.0060
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.1030.0060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. VAN ROY, Tony J. & WOLSEY, Laurence A., 1985. "Valid inequalities and separation for uncapacitated fixed charge networks," LIDAM Reprints CORE 671, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. David R. Karger, 1999. "Random Sampling in Cut, Flow, and Network Design Problems," Mathematics of Operations Research, INFORMS, vol. 24(2), pages 383-413, May.
    3. Andrew P. Armacost & Cynthia Barnhart & Keith A. Ware, 2002. "Composite Variable Formulations for Express Shipment Service Network Design," Transportation Science, INFORMS, vol. 36(1), pages 1-20, February.
    4. Thomas L. Magnanti & Prakash Mirchandani & Rita Vachani, 1995. "Modeling and Solving the Two-Facility Capacitated Network Loading Problem," Operations Research, INFORMS, vol. 43(1), pages 142-157, February.
    5. T. L. Magnanti & R. T. Wong, 1984. "Network Design and Transportation Planning: Models and Algorithms," Transportation Science, INFORMS, vol. 18(1), pages 1-55, February.
    6. Amy Mainville Cohn & Cynthia Barnhart, 2003. "Improving Crew Scheduling by Incorporating Key Maintenance Routing Decisions," Operations Research, INFORMS, vol. 51(3), pages 387-396, June.
    7. Crainic, Teodor Gabriel, 2000. "Service network design in freight transportation," European Journal of Operational Research, Elsevier, vol. 122(2), pages 272-288, April.
    8. Daeki Kim & Cynthia Barnhart & Keith Ware & Gregory Reinhardt, 1999. "Multimodal Express Package Delivery: A Service Network Design Application," Transportation Science, INFORMS, vol. 33(4), pages 391-407, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. G. Guastaroba & M. G. Speranza & D. Vigo, 2016. "Intermediate Facilities in Freight Transportation Planning: A Survey," Transportation Science, INFORMS, vol. 50(3), pages 763-789, August.
    2. Meuffels, W.J.M. & Fleuren, H.A. & Cruijssen, F. & van Dam, E.R., 2009. "Enriching the Tactical Network Design of Express Service Carriers with Fleet Scheduling Characteristics," Other publications TiSEM e146d914-9638-4ae0-9587-b, Tilburg University, School of Economics and Management.
    3. Quesada Pérez, José Miguel & Lange, Jean-Charles & Tancrez, Jean-Sébastien, 2018. "A multi-hub Express Shipment Service Network Design model with flexible hub assignment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 120(C), pages 116-131.
    4. Archetti, Claudia & Peirano, Lorenzo & Speranza, M. Grazia, 2022. "Optimization in multimodal freight transportation problems: A Survey," European Journal of Operational Research, Elsevier, vol. 299(1), pages 1-20.
    5. O'Kelly, Morton E., 2014. "Air freight hubs in the FedEx system: Analysis of fuel use," Journal of Air Transport Management, Elsevier, vol. 36(C), pages 1-12.
    6. Meuffels, W.J.M., 2015. "The design of road and air networks for express service providers," Other publications TiSEM d3266cb8-bc55-41be-adc7-4, Tilburg University, School of Economics and Management.
    7. Michael F. Gorman & John-Paul Clarke & Amir Hossein Gharehgozli & Michael Hewitt & René de Koster & Debjit Roy, 2014. "State of the Practice: A Review of the Application of OR/MS in Freight Transportation," Interfaces, INFORMS, vol. 44(6), pages 535-554, December.
    8. Sophie N. Parragh & Karl F. Doerner, 2018. "Solving routing problems with pairwise synchronization constraints," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(2), pages 443-464, June.
    9. Teodor Gabriel Crainic & Nicoletta Ricciardi & Giovanni Storchi, 2009. "Models for Evaluating and Planning City Logistics Systems," Transportation Science, INFORMS, vol. 43(4), pages 432-454, November.
    10. Louwerse, I. & Mijnarends, J. & Meuffels, I. & Huisman, D. & Fleuren, H.A., 2012. "Scheduling Movements in the Network of an Express Service Provider," Econometric Institute Research Papers EI 2012-08, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. Ahmad Baubaid & Natashia Boland & Martin Savelsbergh, 2021. "The Value of Limited Flexibility in Service Network Designs," Transportation Science, INFORMS, vol. 55(1), pages 52-74, 1-2.
    12. Kilpi, Jani, 2007. "Fleet composition of commercial jet aircraft 1952–2005: Developments in uniformity and scale," Journal of Air Transport Management, Elsevier, vol. 13(2), pages 81-89.
    13. Frederic H. Murphy, 2005. "ASP, The Art and Science of Practice: Elements of a Theory of the Practice of Operations Research: A Framework," Interfaces, INFORMS, vol. 35(2), pages 154-163, April.
    14. Jianjun Zhang & Ou Tang & Jin Zhao & Jiazhen Huo & Yonggang Xia, 2013. "CPEL Redesigns Its Land Express Network," Interfaces, INFORMS, vol. 43(3), pages 221-231, May-June.
    15. I. Campbell & M. Montaz Ali & M. Silverwood, 2020. "Solving a dial-a-flight problem using composite variables," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 123-153, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew P. Armacost & Cynthia Barnhart & Keith A. Ware, 2002. "Composite Variable Formulations for Express Shipment Service Network Design," Transportation Science, INFORMS, vol. 36(1), pages 1-20, February.
    2. Anantaram Balakrishnan & Gang Li & Prakash Mirchandani, 2017. "Optimal Network Design with End-to-End Service Requirements," Operations Research, INFORMS, vol. 65(3), pages 729-750, June.
    3. C S Sung & S H Song, 2003. "Integrated service network design for a cross-docking supply chain network," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(12), pages 1283-1295, December.
    4. Quesada Pérez, José Miguel & Lange, Jean-Charles & Tancrez, Jean-Sébastien, 2018. "A multi-hub Express Shipment Service Network Design model with flexible hub assignment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 120(C), pages 116-131.
    5. Crainic, Teodor Gabriel & Gendron, Bernard & Akhavan Kazemzadeh, Mohammad Rahim, 2022. "A taxonomy of multilayer network design and a survey of transportation and telecommunication applications," European Journal of Operational Research, Elsevier, vol. 303(1), pages 1-13.
    6. Yıldız, Barış & Savelsbergh, Martin, 2022. "Optimizing package express operations in China," European Journal of Operational Research, Elsevier, vol. 300(1), pages 320-335.
    7. Meuffels, W.J.M., 2015. "The design of road and air networks for express service providers," Other publications TiSEM d3266cb8-bc55-41be-adc7-4, Tilburg University, School of Economics and Management.
    8. Mervat Chouman & Teodor Gabriel Crainic & Bernard Gendron, 2017. "Commodity Representations and Cut-Set-Based Inequalities for Multicommodity Capacitated Fixed-Charge Network Design," Transportation Science, INFORMS, vol. 51(2), pages 650-667, May.
    9. Naga V. C. Gudapati & Enrico Malaguti & Michele Monaci, 2022. "Network Design with Service Requirements: Scaling-up the Size of Solvable Problems," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2571-2582, September.
    10. Ahmad Baubaid & Natashia Boland & Martin Savelsbergh, 2021. "The Value of Limited Flexibility in Service Network Designs," Transportation Science, INFORMS, vol. 55(1), pages 52-74, 1-2.
    11. Lai, M. F. & Lo, Hong K., 2004. "Ferry service network design: optimal fleet size, routing, and scheduling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(4), pages 305-328, May.
    12. Dall'Orto, Leonardo Campo & Crainic, Teodor Gabriel & Leal, Jose Eugenio & Powell, Warren B., 2006. "The single-node dynamic service scheduling and dispatching problem," European Journal of Operational Research, Elsevier, vol. 170(1), pages 1-23, April.
    13. Wang, Zujian & Qi, Mingyao, 2019. "Service network design considering multiple types of services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 1-14.
    14. Arnt-Gunnar Lium & Teodor Gabriel Crainic & Stein W. Wallace, 2009. "A Study of Demand Stochasticity in Service Network Design," Transportation Science, INFORMS, vol. 43(2), pages 144-157, May.
    15. Bai, Ruibin & Wallace, Stein W. & Li, Jingpeng & Chong, Alain Yee-Loong, 2014. "Stochastic service network design with rerouting," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 50-65.
    16. Li, Xiangyong & Ding, Yi & Pan, Kai & Jiang, Dapei & Aneja, Y.P., 2020. "Single-path service network design problem with resource constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    17. Li, Xiangyong & Wei, Kai & Aneja, Y.P. & Tian, Peng, 2017. "Design-balanced capacitated multicommodity network design with heterogeneous assets," Omega, Elsevier, vol. 67(C), pages 145-159.
    18. Meng, Qiang & Hei, Xiuling & Wang, Shuaian & Mao, Haijun, 2015. "Carrying capacity procurement of rail and shipping services for automobile delivery with uncertain demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 38-54.
    19. Jansen, Benjamin & Swinkels, Pieter C. J. & Teeuwen, Geert J. A. & van Antwerpen de Fluiter, Babette & Fleuren, Hein A., 2004. "Operational planning of a large-scale multi-modal transportation system," European Journal of Operational Research, Elsevier, vol. 156(1), pages 41-53, July.
    20. Jardar Andersen & Marielle Christiansen & Teodor Gabriel Crainic & Roar Grønhaug, 2011. "Branch and Price for Service Network Design with Asset Management Constraints," Transportation Science, INFORMS, vol. 45(1), pages 33-49, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:34:y:2004:i:1:p:15-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.