IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v118y2018icp568-588.html
   My bibliography  Save this article

Joint design of fleet size, hub locations, and hub capacities for third-party logistics networks with road congestion constraints

Author

Listed:
  • Hu, Lu
  • Zhu, Juan Xiu
  • Wang, Yuan
  • Lee, Loo Hay

Abstract

This paper describes third-party logistics (3PL) systems with consolidation hubs as a hub-and-spoke network. We propose a multiple assignment (MA) model for the joint design of the fleet size and the number, locations and capacities of hubs. The objective is to minimize the total costs, including congestion costs. We explicitly model the road congestion by formulating the route travel time as an increasing function of the number of trucks on the route. We consider two types of trucks to model economies of scale. Similar to a truck booking system, we control the node and road congestions by delaying some of the overfull demand at the origin nodes. We derive the asymptotic behavior as design variables increase and demonstrate how the 3PL system throughput is bounded by the bottleneck routes. When the existing road congestion on the bottleneck routes is heavy, excessively large fleets and hub capacities will worsen the traffic conditions and downgrade the system throughput. We develop a math-heuristic algorithm to solve our problem, which is decomposed into two subproblems. We prove that the two subproblems can be linearized. The numerical experiments reveal some interesting findings: (1) heavier congestion on an existing road network (without 3PL trucks) generates a design with higher requirements (a larger number of hubs, a larger hub capacity and a larger fleet size) and larger economies of scale; (2) neglecting the road congestion constraints optimistically estimates the system performance and generate a design with fewer hubs and a larger number of large trucks; and (3) decreasing the fixed costs of establishing hubs or the large truck-related costs can significantly increase the economies of scale and reduce the total number of trucks.

Suggested Citation

  • Hu, Lu & Zhu, Juan Xiu & Wang, Yuan & Lee, Loo Hay, 2018. "Joint design of fleet size, hub locations, and hub capacities for third-party logistics networks with road congestion constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 568-588.
  • Handle: RePEc:eee:transe:v:118:y:2018:i:c:p:568-588
    DOI: 10.1016/j.tre.2018.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554517311870
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2018.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James F. Campbell, 1996. "Hub Location and the p -Hub Median Problem," Operations Research, INFORMS, vol. 44(6), pages 923-935, December.
    2. Zetina, Carlos Armando & Contreras, Ivan & Cordeau, Jean-François & Nikbakhsh, Ehsan, 2017. "Robust uncapacitated hub location," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 393-410.
    3. An, Yu & Zhang, Yu & Zeng, Bo, 2015. "The reliable hub-and-spoke design problem: Models and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 103-122.
    4. Cunha, Claudio B. & Silva, Marcos Roberto, 2007. "A genetic algorithm for the problem of configuring a hub-and-spoke network for a LTL trucking company in Brazil," European Journal of Operational Research, Elsevier, vol. 179(3), pages 747-758, June.
    5. Ivan Contreras & Jean-François Cordeau & Gilbert Laporte, 2012. "Exact Solution of Large-Scale Hub Location Problems with Multiple Capacity Levels," Transportation Science, INFORMS, vol. 46(4), pages 439-459, November.
    6. Serper, Elif Zeynep & Alumur, Sibel A., 2016. "The design of capacitated intermodal hub networks with different vehicle types," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 51-65.
    7. Ivan Contreras & Juan A. Díaz & Elena Fernández, 2011. "Branch and Price for Large-Scale Capacitated Hub Location Problems with Single Assignment," INFORMS Journal on Computing, INFORMS, vol. 23(1), pages 41-55, February.
    8. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    9. Yaman, Hande & Kara, Bahar Y. & Tansel, Barbaros Ç., 2007. "The latest arrival hub location problem for cargo delivery systems with stopovers," Transportation Research Part B: Methodological, Elsevier, vol. 41(8), pages 906-919, October.
    10. Correia, Isabel & Nickel, Stefan & Saldanha-da-Gama, Francisco, 2010. "Single-assignment hub location problems with multiple capacity levels," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1047-1066, September.
    11. Abdinnour-Helm, Sue, 1998. "A hybrid heuristic for the uncapacitated hub location problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 489-499, April.
    12. Alumur, Sibel & Kara, Bahar Y., 2008. "Network hub location problems: The state of the art," European Journal of Operational Research, Elsevier, vol. 190(1), pages 1-21, October.
    13. Ebery, Jamie, 2001. "Solving large single allocation p-hub problems with two or three hubs," European Journal of Operational Research, Elsevier, vol. 128(2), pages 447-458, January.
    14. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part III: Multi-destination flows," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 305-313, August.
    15. Gelareh, Shahin & Nickel, Stefan, 2011. "Hub location problems in transportation networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1092-1111.
    16. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part II: Queueing at freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 289-303, August.
    17. MacGregor Smith, J. & Cruz, F.R.B., 2014. "M/G/c/c state dependent travel time models and properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 560-579.
    18. Zheng, Jianfeng & Meng, Qiang & Sun, Zhuo, 2015. "Liner hub-and-spoke shipping network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 32-48.
    19. Campbell, James F., 1994. "Integer programming formulations of discrete hub location problems," European Journal of Operational Research, Elsevier, vol. 72(2), pages 387-405, January.
    20. Skorin-Kapov, Darko & Skorin-Kapov, Jadranka & O'Kelly, Morton, 1996. "Tight linear programming relaxations of uncapacitated p-hub median problems," European Journal of Operational Research, Elsevier, vol. 94(3), pages 582-593, November.
    21. Hu, Lu & Liu, Yang, 2016. "Joint design of parking capacities and fleet size for one-way station-based carsharing systems with road congestion constraints," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 268-299.
    22. Meng, Qiang & Wang, Xinchang, 2011. "Intermodal hub-and-spoke network design: Incorporating multiple stakeholders and multi-type containers," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 724-742, May.
    23. Yaman, Hande, 2009. "The hierarchical hub median problem with single assignment," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 643-658, July.
    24. John Gunnar Carlsson & Fan Jia, 2013. "Euclidean Hub-and-Spoke Networks," Operations Research, INFORMS, vol. 61(6), pages 1360-1382, December.
    25. Samir Elhedhli & Huyu Wu, 2010. "A Lagrangean Heuristic for Hub-and-Spoke System Design with Capacity Selection and Congestion," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 282-296, May.
    26. Ivan Contreras & Jean-François Cordeau & Gilbert Laporte, 2011. "Benders Decomposition for Large-Scale Uncapacitated Hub Location," Operations Research, INFORMS, vol. 59(6), pages 1477-1490, December.
    27. Boland, Natashia & Krishnamoorthy, Mohan & Ernst, Andreas T. & Ebery, Jamie, 2004. "Preprocessing and cutting for multiple allocation hub location problems," European Journal of Operational Research, Elsevier, vol. 155(3), pages 638-653, June.
    28. Jeong, Seung-Ju & Lee, Chi-Guhn & Bookbinder, James H., 2007. "The European freight railway system as a hub-and-spoke network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(6), pages 523-536, July.
    29. Marasco, Alessandra, 2008. "Third-party logistics: A literature review," International Journal of Production Economics, Elsevier, vol. 113(1), pages 127-147, May.
    30. Alumur, Sibel A. & Nickel, Stefan & Saldanha-da-Gama, Francisco, 2012. "Hub location under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 529-543.
    31. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part I: General theory," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 281-287, August.
    32. Julian Allen & Michael Browne & Allan Woodburn & Jacques Leonardi, 2012. "The Role of Urban Consolidation Centres in Sustainable Freight Transport," Transport Reviews, Taylor & Francis Journals, vol. 32(4), pages 473-490, April.
    33. Wang, Yuan & Zhang, Dongxiang & Liu, Qing & Shen, Fumin & Lee, Loo Hay, 2016. "Towards enhancing the last-mile delivery: An effective crowd-tasking model with scalable solutions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 279-293.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Jiang & Zhang, Pei-wen & Wang, Yu & Shi, Jim (Junmin), 2022. "Integrated aviation model and metaheuristic algorithm for hub-and-spoke network design and airline fleet planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    2. Nassim Mrabti & Nadia Hamani & Laurent Delahoche, 2022. "A Comprehensive Literature Review on Sustainable Horizontal Collaboration," Sustainability, MDPI, vol. 14(18), pages 1-38, September.
    3. Islem Snoussi & Nadia Hamani & Nassim Mrabti & Lyes Kermad, 2021. "A Robust Mixed-Integer Linear Programming Model for Sustainable Collaborative Distribution," Mathematics, MDPI, vol. 9(18), pages 1-27, September.
    4. Bertha Maya Sopha & Sekar Sakti & Ari Carisza Graha Prasetia & Marselina Winda Dwiansarinopa & Kevin Cullinane, 2021. "Simulating long-term performance of regional distribution centers in archipelagic logistics systems," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(4), pages 697-725, December.
    5. Mohamed Amine Gargouri & Nadia Hamani & Nassim Mrabti & Lyes Kermad, 2021. "Optimization of the Collaborative Hub Location Problem with Metaheuristics," Mathematics, MDPI, vol. 9(21), pages 1-31, October.
    6. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Pirayesh, Amir & Karimi-Mamaghan, Amir Mohammad & Irani, Hassan, 2020. "Hub-and-spoke network design under congestion: A learning based metaheuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    7. Alp, Osman & Tan, Tarkan & Udenio, Maximiliano, 2022. "Transitioning to sustainable freight transportation by integrating fleet replacement and charging infrastructure decisions," Omega, Elsevier, vol. 109(C).
    8. Mrabti, Nassim & Hamani, Nadia & Boulaksil, Youssef & Amine Gargouri, Mohamed & Delahoche, Laurent, 2022. "A multi-objective optimization model for the problems of sustainable collaborative hub location and cost sharing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    9. Evangelos Gkanatsas & Harold Krikke, 2020. "Towards a Pro-Silience Framework: A Literature Review on Quantitative Modelling of Resilient 3PL Supply Chain Network Designs," Sustainability, MDPI, vol. 12(10), pages 1-25, May.
    10. Schmidt, Carise E. & Silva, Arinei C.L. & Darvish, Maryam & Coelho, Leandro C., 2019. "The time-dependent location-routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 293-315.
    11. Han, Linghui & Zhu, Chengjuan & Wang, David Z.W. & Sun, Huijun & Tan, Zhijia & Meng, Meng, 2019. "Discrete-time dynamic road congestion pricing under stochastic user optimal principle," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 24-36.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alumur, Sibel A. & Campbell, James F. & Contreras, Ivan & Kara, Bahar Y. & Marianov, Vladimir & O’Kelly, Morton E., 2021. "Perspectives on modeling hub location problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 1-17.
    2. Nader Azizi & Navneet Vidyarthi & Satyaveer S. Chauhan, 2018. "Modelling and analysis of hub-and-spoke networks under stochastic demand and congestion," Annals of Operations Research, Springer, vol. 264(1), pages 1-40, May.
    3. Rostami, Borzou & Kämmerling, Nicolas & Naoum-Sawaya, Joe & Buchheim, Christoph & Clausen, Uwe, 2021. "Stochastic single-allocation hub location," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1087-1106.
    4. Dhyani, Sneha & Jayaswal, Sachin & Sinha, Ankur & Vidyarthi, Navneet, 2019. "Alternate Second Order Conic Programming Reformulations for Hub Location with Capacity Selection under Demand," IIMA Working Papers WP 2018-12-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    5. Taherkhani, Gita & Alumur, Sibel A., 2019. "Profit maximizing hub location problems," Omega, Elsevier, vol. 86(C), pages 1-15.
    6. Azizi, Nader & Salhi, Said, 2022. "Reliable hub-and-spoke systems with multiple capacity levels and flow dependent discount factor," European Journal of Operational Research, Elsevier, vol. 298(3), pages 834-854.
    7. Yaman, Hande, 2011. "Allocation strategies in hub networks," European Journal of Operational Research, Elsevier, vol. 211(3), pages 442-451, June.
    8. Ghaffarinasab, Nader & Kara, Bahar Y., 2022. "A conditional β-mean approach to risk-averse stochastic multiple allocation hub location problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    9. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    10. Sneha Dhyani Bhatt & Sachin Jayaswal & Ankur Sinha & Navneet Vidyarthi, 2021. "Alternate second order conic program reformulations for hub location under stochastic demand and congestion," Annals of Operations Research, Springer, vol. 304(1), pages 481-527, September.
    11. Nader Ghaffarinasab & Bahar Y. Kara, 2019. "Benders Decomposition Algorithms for Two Variants of the Single Allocation Hub Location Problem," Networks and Spatial Economics, Springer, vol. 19(1), pages 83-108, March.
    12. Ghaffarinasab, Nader & Kara, Bahar Y. & Campbell, James F., 2022. "The stratified p-hub center and p-hub maximal covering problems," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 120-148.
    13. J. Fabian Meier & Uwe Clausen, 2018. "Solving Single Allocation Hub Location Problems on Euclidean Data," Transportation Science, INFORMS, vol. 52(5), pages 1141-1155, October.
    14. Jayaswal, Sachin & Vidyarthi, Navneet, 2023. "Multiple allocation hub location with service level constraints for two shipment classes," European Journal of Operational Research, Elsevier, vol. 309(2), pages 634-655.
    15. Nader Azizi, 2019. "Managing facility disruption in hub-and-spoke networks: formulations and efficient solution methods," Annals of Operations Research, Springer, vol. 272(1), pages 159-185, January.
    16. Juanjo Peiró & Ángel Corberán & Rafael Martí & Francisco Saldanha-da-Gama, 2019. "Heuristic Solutions for a Class of Stochastic Uncapacitated p-Hub Median Problems," Transportation Science, INFORMS, vol. 53(4), pages 1126-1149, July.
    17. An, Yu & Zhang, Yu & Zeng, Bo, 2015. "The reliable hub-and-spoke design problem: Models and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 103-122.
    18. Roni, Md.S. & Eksioglu, Sandra D. & Searcy, Erin & Jha, Krishna, 2014. "A supply chain network design model for biomass co-firing in coal-fired power plants," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 115-134.
    19. Correia, Isabel & Nickel, Stefan & Saldanha-da-Gama, Francisco, 2018. "A stochastic multi-period capacitated multiple allocation hub location problem: Formulation and inequalities," Omega, Elsevier, vol. 74(C), pages 122-134.
    20. Zetina, Carlos Armando & Contreras, Ivan & Cordeau, Jean-François & Nikbakhsh, Ehsan, 2017. "Robust uncapacitated hub location," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 393-410.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:118:y:2018:i:c:p:568-588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.