IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v133y2020icp197-213.html
   My bibliography  Save this article

Empty container repositioning with foldable containers in a river transport network considering the limitations of bridge heights

Author

Listed:
  • Zhang, Ruiyou
  • Huang, Chao
  • Feng, Xuehao

Abstract

River–sea intermodal transport is becoming increasingly popular for container repositioning in hinterland areas, owing to its cost-efficiency and low energy consumption. However, bridge heights and water depths may restrict the sailing of container vessels on rivers, which presents a challenge for the wider implementation of river–sea intermodal transport. In this study, we investigate the potential of foldable containers to improve empty container repositioning in river–sea intermodal transport, with consideration of bridge height and water depth constraints. A mathematical model is developed to minimize the total cost. Numerical experiments based on near-practical instances on the Yangtze River in China are conducted to test the effectiveness of the model and the efficiency of foldable containers. The results show that introducing foldable containers into empty container repositioning along a river can utilize vessel space more effectively and decrease the total cost for container shipping companies. The joint impacts of bridge heights and foldable containers on the overall performance are analyzed to obtain managerial insights. Finally, policies are suggested to facilitate the implementation of foldable containers for river–sea intermodal transport.

Suggested Citation

  • Zhang, Ruiyou & Huang, Chao & Feng, Xuehao, 2020. "Empty container repositioning with foldable containers in a river transport network considering the limitations of bridge heights," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 197-213.
  • Handle: RePEc:eee:transa:v:133:y:2020:i:c:p:197-213
    DOI: 10.1016/j.tra.2020.01.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856419306330
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng Lian & Jiaru Jin & Zhongzhen Yang, 2019. "Optimal container ship size: a global cost minimization approach," Maritime Policy & Management, Taylor & Francis Journals, vol. 46(7), pages 802-817, October.
    2. Caris, An & Limbourg, Sabine & Macharis, Cathy & van Lier, Tom & Cools, Mario, 2014. "Integration of inland waterway transport in the intermodal supply chain: a taxonomy of research challenges," Journal of Transport Geography, Elsevier, vol. 41(C), pages 126-136.
    3. Yang, Dong & Wang, Kelly Yujie & Xu, Hua & Zhang, Zhehui, 2017. "Path to a multilayered transshipment port system: How the Yangtze River bulk port system has evolved," Journal of Transport Geography, Elsevier, vol. 64(C), pages 54-64.
    4. Koichi Shintani & Rob Konings & Akio Imai, 2012. "The effect of foldable containers on the costs of container fleet management in liner shipping networks," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 14(4), pages 455-479, December.
    5. Kaiser, Ilza Machado & Bezerra, Barbara Stolte & Castro, Leslie Ivana Serino, 2013. "Is the environmental policies procedures a barrier to development of inland navigation and port management? A case of study in Brazil," Transportation Research Part A: Policy and Practice, Elsevier, vol. 47(C), pages 78-86.
    6. Xuan Qiu & Eugene Y.C. Wong & Jasmine Siu Lee Lam, 2018. "Evaluating economic and environmental value of liner vessel sharing along the maritime silk road," Maritime Policy & Management, Taylor & Francis Journals, vol. 45(3), pages 336-350, April.
    7. Zhang, Ruiyou & Zhao, Haishu & Moon, Ilkyeong, 2018. "Range-based truck-state transition modeling method for foldable container drayage services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 225-239.
    8. Veenstra, Albert & Notteboom, Theo, 2011. "The development of the Yangtze River container port system," Journal of Transport Geography, Elsevier, vol. 19(4), pages 772-781.
    9. Ying Wang & Gi-Tae Yeo, 2019. "Transshipment hub port selection for shipping carriers in a dual hub-port system," Maritime Policy & Management, Taylor & Francis Journals, vol. 46(6), pages 701-714, August.
    10. Ilkyeong Moon & Hwajin Hong, 2016. "Repositioning of empty containers using both standard and foldable containers," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 18(1), pages 61-77, March.
    11. Wiegmans, Bart & Witte, Patrick, 2017. "Efficiency of inland waterway container terminals: Stochastic frontier and data envelopment analysis to analyze the capacity design- and throughput efficiency," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 12-21.
    12. Jan Zazgornik & Manfred Gronalt & Patrick Hirsch, 2012. "A comprehensive approach to planning the deployment of transportation assets in distributing forest products," International Journal of Revenue Management, Inderscience Enterprises Ltd, vol. 6(1/2), pages 45-61.
    13. I. K. Moon & Z. B. Qiu & J. H. Wang, 2015. "A combined tramp ship routing, fleet deployment, and network design problem," Maritime Policy & Management, Taylor & Francis Journals, vol. 42(1), pages 68-91, January.
    14. Du, Yuquan & Meng, Qiang & Wang, Shuaian & Kuang, Haibo, 2019. "Two-phase optimal solutions for ship speed and trim optimization over a voyage using voyage report data," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 88-114.
    15. Qiang Meng & Shuaian Wang & Henrik Andersson & Kristian Thun, 2014. "Containership Routing and Scheduling in Liner Shipping: Overview and Future Research Directions," Transportation Science, INFORMS, vol. 48(2), pages 265-280, May.
    16. Jonkeren, Olaf & Jourquin, Bart & Rietveld, Piet, 2011. "Modal-split effects of climate change: The effect of low water levels on the competitive position of inland waterway transport in the river Rhine area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1007-1019.
    17. Zheng, Jianfeng & Sun, Zhuo & Zhang, Fangjun, 2016. "Measuring the perceived container leasing prices in liner shipping network design with empty container repositioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 123-140.
    18. Rob Konings, 2005. "Foldable Containers to Reduce the Costs of Empty Transport? A Cost–Benefit Analysis from a Chain and Multi-Actor Perspective," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 7(3), pages 223-249, September.
    19. Li, Feng & Yang, Dong & Wang, Shuaian & Weng, Jinxian, 2019. "Ship routing and scheduling problem for steel plants cluster alongside the Yangtze River," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 198-210.
    20. Shintani, Koichi & Konings, Rob & Imai, Akio, 2010. "The impact of foldable containers on container fleet management costs in hinterland transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(5), pages 750-763, September.
    21. Zhongzhen Yang & Haiping Shi & Kang Chen & Hongli Bao, 2014. "Optimization of container liner network on the Yangtze River," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(1), pages 79-96, January.
    22. Zheng, Jianfeng & Yang, Dong, 2016. "Hub-and-spoke network design for container shipping along the Yangtze River," Journal of Transport Geography, Elsevier, vol. 55(C), pages 51-57.
    23. Liehui Wang & Yan Zhu & Cesar Ducruet & Mattia Bunel & Yui-yip Lau, 2018. "From hierarchy to networking: the evolution of the “twenty-first-century Maritime Silk Road” container shipping system," Transport Reviews, Taylor & Francis Journals, vol. 38(4), pages 416-435, July.
    24. Shuzhu Zhang & Xiao Ruan & Yuezhang Xia & Xuehao Feng, 2018. "Foldable container in empty container repositioning in intermodal transportation network of Belt and Road Initiative: strengths and limitations," Maritime Policy & Management, Taylor & Francis Journals, vol. 45(3), pages 351-369, April.
    25. Dong Yang & Shuaian Wang, 2017. "Analysis of the development potential of bulk shipping network on the Yangtze River," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(4), pages 512-523, May.
    26. Moon, Ilkyeong & Do Ngoc, Anh-Dung & Konings, Rob, 2013. "Foldable and standard containers in empty container repositioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 107-124.
    27. Wang, Shuaian & Meng, Qiang & Sun, Zhuo, 2013. "Container routing in liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 1-7.
    28. Sun, Zhuo & Zheng, Jianfeng, 2016. "Finding potential hub locations for liner shipping," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 750-761.
    29. Witte, Patrick & Wiegmans, Bart & van Oort, Frank & Spit, Tejo, 2014. "Governing inland ports: a multi-dimensional approach to addressing inland port–city challenges in European transport corridors," Journal of Transport Geography, Elsevier, vol. 36(C), pages 42-52.
    30. Smid, Martijn & Dekker, Sander & Wiegmans, Bart, 2016. "Modeling the cost sensitivity of intermodal inland waterway terminals: A scenario based approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 112-122.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:133:y:2020:i:c:p:197-213. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.