IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v85y2016icp112-122.html
   My bibliography  Save this article

Modeling the cost sensitivity of intermodal inland waterway terminals: A scenario based approach

Author

Listed:
  • Smid, Martijn
  • Dekker, Sander
  • Wiegmans, Bart

Abstract

Cost characteristics of differently sized inland waterway terminals (IWTs) have not received much scientific attention. This observation is remarkable given the importance of costs in transportation decision-making. Classification of differently sized IWTs and their cost structure will lead to more insight into the container cost per terminal. Therefore, the goal of our research was to determine both the characteristics of the cost structure associated with different inland waterway (IWW) container terminal types and the sensitivity of the system to cost/TEU changes in input and operational conditions. We show that terminals with a higher container throughput encounter fewer costs, and can therefore charge a lower price. Assumed delays of 2h per day on the waterside cause a 4.7–6.6% cost increase per container, mainly caused by extra labor costs. It is also assumed that the changing climate will influence terminal operations and results in extreme water levels (lasting two weeks occurring four times a year) causing a cost increase of 1.0–3.4%. Subsidies can cause cost reductions of 0.3–10.4% depending on the exact form, with the smaller terminals benefiting more because their investment costs are higher relative to operational costs. A subsidy can lower costs by up to 10.4%, but it is questionable whether small and medium terminals will have a lower cost price than the market price, showing that it is important for small and medium terminals to quickly grow in size.

Suggested Citation

  • Smid, Martijn & Dekker, Sander & Wiegmans, Bart, 2016. "Modeling the cost sensitivity of intermodal inland waterway terminals: A scenario based approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 112-122.
  • Handle: RePEc:eee:transa:v:85:y:2016:i:c:p:112-122
    DOI: 10.1016/j.tra.2016.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856416000069
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2016.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexandra M. Newman & Candace Arai Yano, 2000. "Scheduling Direct and Indirect Trains and Containers in an Intermodal Setting," Transportation Science, INFORMS, vol. 34(3), pages 256-270, August.
    2. Antoine Frémont & Pierre Franc, 2010. "Hinterland transportation in Europe: Combined transport versus road transport," Post-Print hal-00542346, HAL.
    3. Caris, A. & Macharis, C. & Janssens, G.K., 2011. "Network analysis of container barge transport in the port of Antwerp by means of simulation," Journal of Transport Geography, Elsevier, vol. 19(1), pages 125-133.
    4. Kim, Nam Seok & Van Wee, Bert, 2011. "The relative importance of factors that influence the break-even distance of intermodal freight transport systems," Journal of Transport Geography, Elsevier, vol. 19(4), pages 859-875.
    5. Morlok, Edward K. & Spasovic, Lazar N., 1994. "Redesigning Rail-Truck Intermodal Drayage Operations for Enhanced Service and Cost Performance," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 34(1).
    6. Maguire, A. & Ivey, S. & Golias, M.M & Lipinski, M.E, 2010. "Relieving Congestion at Intermodal Marine Container Terminals: Review of Tactical/Operational Strategies," 51st Annual Transportation Research Forum, Arlington, Virginia, March 11-13, 2010 207280, Transportation Research Forum.
    7. Zhao, Wenjuan & Goodchild, Anne V., 2010. "The impact of truck arrival information on container terminal rehandling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(3), pages 327-343, May.
    8. Ballis, Athanasios & Golias, John, 2002. "Comparative evaluation of existing and innovative rail-road freight transport terminals," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(7), pages 593-611, August.
    9. Erhan Kozan, 2006. "Optimum Capacity for Intermodal Container Terminals," Transportation Planning and Technology, Taylor & Francis Journals, vol. 29(6), pages 471-482, September.
    10. Dimitrios Tsamboulas & Ioannis Dimitropoulos, 1999. "Appraisal of investments in European nodal centres for goods – freight villages: A comparative analysis," Transportation, Springer, vol. 26(4), pages 381-398, November.
    11. Bart W. Wiegmans, 2005. "Evaluation of Potentially Successful Barge Innovations," Transport Reviews, Taylor & Francis Journals, vol. 25(5), pages 573-589, February.
    12. Bontekoning, Y. M. & Macharis, C. & Trip, J. J., 2004. "Is a new applied transportation research field emerging?--A review of intermodal rail-truck freight transport literature," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(1), pages 1-34, January.
    13. Lehtinen, Jarkko & Bask, Anu H., 2012. "Analysis of business models for potential 3Mode transport corridor," Journal of Transport Geography, Elsevier, vol. 22(C), pages 96-108.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wiercx, Max & van Kalmthout, Martijn & Wiegmans, Bart, 2019. "Inland waterway terminal yard configuration contributing to sustainability: Modeling yard operations," Research in Transportation Economics, Elsevier, vol. 73(C), pages 4-16.
    2. Witte, Patrick & Wiegmans, Bart & Ng, Adolf K.Y., 2019. "A critical review on the evolution and development of inland port research," Journal of Transport Geography, Elsevier, vol. 74(C), pages 53-61.
    3. Basallo-Triana, Mario José & Bravo-Bastidas, Juan José & Vidal-Holguín, Carlos Julio, 2022. "A rail-road transshipment yard picture," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    4. Zhang, Ruiyou & Huang, Chao & Feng, Xuehao, 2020. "Empty container repositioning with foldable containers in a river transport network considering the limitations of bridge heights," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 197-213.
    5. Monios, Jason & Bergqvist, Rickard, 2019. "The transport geography of electric and autonomous vehicles in road freight networks," Journal of Transport Geography, Elsevier, vol. 80(C).
    6. Fan Bu & Heather Nachtmann, 2023. "Literature review and comparative analysis of inland waterways transport: “Container on Barge”," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(1), pages 140-173, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramaekers, Katrien & Verdonck, Lotte & Caris, An & Meers, Dries & Macharis, Cathy, 2017. "Allocating collaborative costs in multimodal barge networks for freight bundling," Journal of Transport Geography, Elsevier, vol. 65(C), pages 56-69.
    2. Nils Boysen & Malte Fliedner & Florian Jaehn & Erwin Pesch, 2013. "A Survey on Container Processing in Railway Yards," Transportation Science, INFORMS, vol. 47(3), pages 312-329, August.
    3. Janic, Milan, 2008. "An assessment of the performance of the European long intermodal freight trains (LIFTS)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1326-1339, December.
    4. Erica Varese & Danilo Stefano Marigo & Mariarosaria Lombardi, 2020. "Dry Port: A Review on Concept, Classification, Functionalities and Technological Processes," Logistics, MDPI, vol. 4(4), pages 1-16, November.
    5. Leachman, Robert C. & Jula, Payman, 2012. "Estimating flow times for containerized imports from Asia to the United States through the Western rail network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 296-309.
    6. Bart Wiegmans & Behzad Behdani, 2018. "A review and analysis of the investment in, and cost structure of, intermodal rail terminals," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 33-51, January.
    7. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    8. Marino Lupi & Antonio Pratelli & Federico Campi & Andrea Ceccotti & Alessandro Farina, 2021. "The “Island Formation” within the Hinterland of a Port System: The Case of the Padan Plain in Italy," Sustainability, MDPI, vol. 13(9), pages 1-28, April.
    9. Koi Yu Adolf Ng & César Ducruet, 2014. "The changing tides of port geography (1950–2012)," Post-Print halshs-01359160, HAL.
    10. Ralf Elbert & Lowis Seikowsky, 2017. "The influences of behavioral biases, barriers and facilitators on the willingness of forwarders’ decision makers to modal shift from unimodal road freight transport to intermodal road–rail freight tra," Journal of Business Economics, Springer, vol. 87(8), pages 1083-1123, November.
    11. Verma, Manish & Verter, Vedat, 2010. "A lead-time based approach for planning rail-truck intermodal transportation of dangerous goods," European Journal of Operational Research, Elsevier, vol. 202(3), pages 696-706, May.
    12. Emeric Lendjel & Marianne Fischman, 2013. "Transaction costs of inland river transport for urban logistics in France," Working Papers halshs-00978092, HAL.
    13. Branislav Dragović & Ernestos Tzannatos & Nam Kuy Park, 2017. "Simulation modelling in ports and container terminals: literature overview and analysis by research field, application area and tool," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 4-34, March.
    14. Fazi, Stefano & Fransoo, Jan C. & Van Woensel, Tom & Dong, Jing-Xin, 2020. "A variant of the split vehicle routing problem with simultaneous deliveries and pickups for inland container shipping in dry-port based systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    15. Fan Bu & Heather Nachtmann, 2023. "Literature review and comparative analysis of inland waterways transport: “Container on Barge”," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(1), pages 140-173, March.
    16. Macharis, C. & Bontekoning, Y. M., 2004. "Opportunities for OR in intermodal freight transport research: A review," European Journal of Operational Research, Elsevier, vol. 153(2), pages 400-416, March.
    17. Saeedi, Hamid & Wiegmans, Bart & Behdani, Behzad & Zuidwijk, Rob, 2017. "European intermodal freight transport network: Market structure analysis," Journal of Transport Geography, Elsevier, vol. 60(C), pages 141-154.
    18. Marianne Fischman & Emeric Lendjel, 2012. "Maritime Ports And Inland Interconnections: A Transactional Analysis Of Container Barge Transport In France," Post-Print halshs-00741127, HAL.
    19. Boysen, Nils & Fliedner, Malte, 2010. "Determining crane areas in intermodal transshipment yards: The yard partition problem," European Journal of Operational Research, Elsevier, vol. 204(2), pages 336-342, July.
    20. Basallo-Triana, Mario José & Bravo-Bastidas, Juan José & Vidal-Holguín, Carlos Julio, 2022. "A rail-road transshipment yard picture," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:85:y:2016:i:c:p:112-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.