IDEAS home Printed from https://ideas.repec.org/a/eee/jmacro/v28y2006i1p5-22.html
   My bibliography  Save this article

Singularity bifurcations

Author

Listed:
  • He, Yijun
  • Barnett, William A.

Abstract

equation models represent an important class of macroeconomic systems. Our ongoing research (He and Barnett (2003)) on the Leeper and Sims (1994) Euler equations macroeconometric model is revealing the existence of singularity-induced bifurcations, when the model¡¯s parameters are within a confidence region about the parameter estimates. Although known to engineers, singularity bifurcation has not previously been seen in the economics literature. Knowledge of the nature of singularity-induced bifurcations is likely to become important in understanding the dynamics of modern macroeconometric models. This paper explains singularity-induced bifurcation, its nature, and its identification and contrasts this class of bifurcations with the more common forms of bifurcation we have previously encountered within the parameter space of the Bergstrom and Wymer (1976) continuous time macroeconometric model of the UK economy. (See, e.g., Barnett and He (1999, 2002)).
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • He, Yijun & Barnett, William A., 2006. "Singularity bifurcations," Journal of Macroeconomics, Elsevier, vol. 28(1), pages 5-22, March.
  • Handle: RePEc:eee:jmacro:v:28:y:2006:i:1:p:5-22
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0164-0704(05)00070-4
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. William A. Barnett & Yijun He & ., 1999. "Stabilization Policy as Bifurcation Selection: Would Keynesian Policy Work if the World Really were Keynesian?," Macroeconomics 9906008, EconWPA.
    2. Boldrin, Michele & Woodford, Michael, 1990. "Equilibrium models displaying endogenous fluctuations and chaos : A survey," Journal of Monetary Economics, Elsevier, vol. 25(2), pages 189-222, March.
    3. Engelbert Dockner & Gustav Feichtinger, 1991. "On the optimality of limit cycles in dynamic economic systems," Journal of Economics, Springer, vol. 53(1), pages 31-50, February.
    4. William A. Barnett & Jane Binner & W. Erwin Diewert, 2005. "Functional Structure and Approximation in Econometrics (book front matter)," Econometrics 0511006, EconWPA.
    5. Eric M. Leeper & Christopher A. Sims, 1994. "Toward a Modern Macroeconomic Model Usable for Policy Analysis," NBER Chapters,in: NBER Macroeconomics Annual 1994, Volume 9, pages 81-140 National Bureau of Economic Research, Inc.
    6. William A. Barnett & Yijun He, 2004. "New Phenomena Identified in a Stochastic Dynamic Macroeconometric Model: A Bifurcation Perspective," Computing in Economics and Finance 2004 145, Society for Computational Economics.
    7. Barnett William A. & He Yijun, 1999. "Stability Analysis of Continuous-Time Macroeconometric Systems," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(4), pages 1-22, January.
    8. Benhabib, Jess & Nishimura, Kazuo, 1979. "The hopf bifurcation and the existence and stability of closed orbits in multisector models of optimal economic growth," Journal of Economic Theory, Elsevier, vol. 21(3), pages 421-444, December.
    9. Bala, Venkatesh & Majumdar, Mukul, 1992. "Chaotic Tatonnement," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 2(4), pages 437-445, October.
    10. Luenberger, David G & Arbel, Ami, 1977. "Singular Dynamic Leontief Systems," Econometrica, Econometric Society, vol. 45(4), pages 991-995, May.
    11. Herbert E. Scarf, 1959. "Some Examples of Global Instability of the Competitive Equilibrium," Cowles Foundation Discussion Papers 79, Cowles Foundation for Research in Economics, Yale University.
    12. repec:cup:macdyn:v:6:y:2002:i:5:p:713-47 is not listed on IDEAS
    13. Venkatesh Bala, 1997. "A pitchfork bifurcation in the tatonnement process," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 10(3), pages 521-530.
    14. Barnett, William A. & He, Yijun, 2002. "Stabilization Policy As Bifurcation Selection: Would Stabilization Policy Work If The Economy Really Were Unstable?," Macroeconomic Dynamics, Cambridge University Press, vol. 6(05), pages 713-747, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Banerjee, Sanjibani & A. Barnett, William & A. Duzhak, Evgeniya & Gopalan, Ramu, 2011. "Bifurcation analysis of Zellner's Marshallian Macroeconomic Model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(9), pages 1577-1585, September.
    2. Barnett, William A. & Eryilmaz, Unal, 2013. "Hopf bifurcation in the Clarida, Gali, and Gertler model," Economic Modelling, Elsevier, vol. 31(C), pages 401-404.
    3. Barnett, William A. & He, Susan, 2010. "Existence of singularity bifurcation in an Euler-equations model of the United States economy: Grandmont was right," Economic Modelling, Elsevier, vol. 27(6), pages 1345-1354, November.
    4. William Barnett & Evgeniya Duzhak, 2010. "Empirical assessment of bifurcation regions within New Keynesian models," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 45(1), pages 99-128, October.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmacro:v:28:y:2006:i:1:p:5-22. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/622617 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.