IDEAS home Printed from https://ideas.repec.org/a/eee/jmacro/v28y2006i1p5-22.html
   My bibliography  Save this article

Singularity bifurcations

Author

Listed:
  • He, Yijun
  • Barnett, William A.

Abstract

Euler equation models represent an important class of macroeconomic systems. Our ongoing research (He and Barnett (2003)) on the Leeper and Sims (1994) Euler equations macroeconometric model is revealing the existence of singularity-induced bifurcations, when the model’s parameters are within a confidence region about the parameter estimates. Although known to engineers, singularity bifurcation has not previously been seen in the economics literature. Knowledge of the nature of singularity-induced bifurcations is likely to become important in understanding the dynamics of modern macroeconometric models. This paper explains singularity-induced bifurcation, its nature, and its identification and contrasts this class of bifurcations with the more common forms of bifurcation we have previously encountered within the parameter space of the Bergstrom and Wymer (1976) continuous time macroeconometric model of the UK economy. (See, e.g., Barnett and He (1999, 2002)).
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • He, Yijun & Barnett, William A., 2006. "Singularity bifurcations," Journal of Macroeconomics, Elsevier, vol. 28(1), pages 5-22, March.
  • Handle: RePEc:eee:jmacro:v:28:y:2006:i:1:p:5-22
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0164-0704(05)00070-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. William A. Barnett & Yijun He & ., 1999. "Stabilization Policy as Bifurcation Selection: Would Keynesian Policy Work if the World Really were Keynesian?," Macroeconomics 9906008, University Library of Munich, Germany.
    2. Boldrin, Michele & Woodford, Michael, 1990. "Equilibrium models displaying endogenous fluctuations and chaos : A survey," Journal of Monetary Economics, Elsevier, vol. 25(2), pages 189-222, March.
    3. Engelbert Dockner & Gustav Feichtinger, 1991. "On the optimality of limit cycles in dynamic economic systems," Journal of Economics, Springer, vol. 53(1), pages 31-50, February.
    4. William A. Barnett & Jane Binner & W. Erwin Diewert, 2005. "Functional Structure and Approximation in Econometrics (book front matter)," Econometrics 0511006, University Library of Munich, Germany.
    5. Eric M. Leeper & Christopher A. Sims, 1994. "Toward a Modern Macroeconomic Model Usable for Policy Analysis," NBER Chapters, in: NBER Macroeconomics Annual 1994, Volume 9, pages 81-140, National Bureau of Economic Research, Inc.
    6. William A. Barnett & Yijun He, 2004. "New Phenomena Identified in a Stochastic Dynamic Macroeconometric Model: A Bifurcation Perspective," Computing in Economics and Finance 2004 145, Society for Computational Economics.
    7. Barnett William A. & He Yijun, 1999. "Stability Analysis of Continuous-Time Macroeconometric Systems," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(4), pages 1-22, January.
    8. Benhabib, Jess & Nishimura, Kazuo, 1979. "The hopf bifurcation and the existence and stability of closed orbits in multisector models of optimal economic growth," Journal of Economic Theory, Elsevier, vol. 21(3), pages 421-444, December.
    9. Bala, Venkatesh & Majumdar, Mukul, 1992. "Chaotic Tatonnement," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 2(4), pages 437-445, October.
    10. Luenberger, David G & Arbel, Ami, 1977. "Singular Dynamic Leontief Systems," Econometrica, Econometric Society, vol. 45(4), pages 991-995, May.
    11. Herbert E. Scarf, 1959. "Some Examples of Global Instability of the Competitive Equilibrium," Cowles Foundation Discussion Papers 79, Cowles Foundation for Research in Economics, Yale University.
    12. repec:cup:macdyn:v:6:y:2002:i:5:p:713-47 is not listed on IDEAS
    13. Venkatesh Bala, 1997. "A pitchfork bifurcation in the tatonnement process," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 10(3), pages 521-530.
    14. Barnett, William A. & He, Yijun, 2002. "Stabilization Policy As Bifurcation Selection: Would Stabilization Policy Work If The Economy Really Were Unstable?," Macroeconomic Dynamics, Cambridge University Press, vol. 6(5), pages 713-747, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Banerjee, Sanjibani & A. Barnett, William & A. Duzhak, Evgeniya & Gopalan, Ramu, 2011. "Bifurcation analysis of Zellner's Marshallian Macroeconomic Model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(9), pages 1577-1585, September.
    2. Barnett, William A. & Eryilmaz, Unal, 2013. "Hopf bifurcation in the Clarida, Gali, and Gertler model," Economic Modelling, Elsevier, vol. 31(C), pages 401-404.
    3. William Barnett & Evgeniya Duzhak, 2010. "Empirical assessment of bifurcation regions within New Keynesian models," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 45(1), pages 99-128, October.
    4. Barnett, William A. & He, Susan, 2010. "Existence of singularity bifurcation in an Euler-equations model of the United States economy: Grandmont was right," Economic Modelling, Elsevier, vol. 27(6), pages 1345-1354, November.
    5. Moosavi Mohseni, Reza & Kilicman, Adem, 2014. "Hopf bifurcation in an open monetary economic system: Taylor versus inflation targeting rules," Chaos, Solitons & Fractals, Elsevier, vol. 61(C), pages 8-12.
    6. Serletis, Apostolos & Shahmoradi, Asghar & Serletis, Demitre, 2007. "Effect of noise on the bifurcation behavior of nonlinear dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 914-921.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William A. Barnett & Yijun He, 2002. "Bifurcations in Macroeconomic Models," Macroeconomics 0210006, University Library of Munich, Germany.
    2. Barnett, William A. & Duzhak, Evgeniya Aleksandrovna, 2008. "Non-robust dynamic inferences from macroeconometric models: Bifurcation stratification of confidence regions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3817-3825.
    3. Barnett, William A. & He, Susan, 2010. "Existence of singularity bifurcation in an Euler-equations model of the United States economy: Grandmont was right," Economic Modelling, Elsevier, vol. 27(6), pages 1345-1354, November.
    4. William A. Barnett & Yijun He & ., 1999. "Stabilization Policy as Bifurcation Selection: Would Keynesian Policy Work if the World Really were Keynesian?," Macroeconomics 9906008, University Library of Munich, Germany.
    5. Banerjee, Sanjibani & A. Barnett, William & A. Duzhak, Evgeniya & Gopalan, Ramu, 2011. "Bifurcation analysis of Zellner's Marshallian Macroeconomic Model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(9), pages 1577-1585, September.
    6. William Barnett & Barry E. Jones & Milka Kirova & Travis D. Nesmith & Meenakshi Pasupathy1, 2004. "The Nonlinear Skeletons in the Closet," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 200403, University of Kansas, Department of Economics, revised May 2004.
    7. William Barnett & Evgeniya Duzhak, 2010. "Empirical assessment of bifurcation regions within New Keynesian models," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 45(1), pages 99-128, October.
    8. Barnett, William A. & Ghosh, Taniya, 2013. "Bifurcation analysis of an endogenous growth model," The Journal of Economic Asymmetries, Elsevier, vol. 10(1), pages 53-64.
    9. Barnett, William A. & Eryilmaz, Unal, 2013. "Hopf bifurcation in the Clarida, Gali, and Gertler model," Economic Modelling, Elsevier, vol. 31(C), pages 401-404.
    10. Barnett, William A. & Chen, Guo, 2015. "Bifurcation of Macroeconometric Models and Robustness of Dynamical Inferences," Foundations and Trends(R) in Econometrics, now publishers, vol. 8(1-2), pages 1-144, September.
    11. William A. Barnett & Yijun He, 1999. "Center Manifold, Stability, and Bifurcations in Continuous Time Macroeconometric Systems," Macroeconomics 9901002, University Library of Munich, Germany.
    12. He, Yijun & Barnett, William A., 2006. "Existence of bifurcation in macroeconomic dynamics: Grandmont was right," MPRA Paper 756, University Library of Munich, Germany.
    13. Cavalli, Fausto & Naimzada, Ahmad, 2015. "A tâtonnement process with fading memory, stabilization and optimal speed of convergence," Chaos, Solitons & Fractals, Elsevier, vol. 79(C), pages 116-129.
    14. Barnett William A & Dalkir Mehmet S, 2007. "Gains from Synchronization," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 11(1), pages 28-55, March.
    15. Eric Kemp-Benedict, 2011. "Second-Order, Dissipative T\^atonnement: Economic Interpretation and 2-Point Limit Cycles," Papers 1108.0188, arXiv.org, revised Aug 2011.
    16. Barnett, William A., 2006. "Comments on "Chaotic monetary dynamics with confidence"," Journal of Macroeconomics, Elsevier, vol. 28(1), pages 253-255, March.
    17. Growiec, Jakub & McAdam, Peter & Mućk, Jakub, 2018. "Endogenous labor share cycles: Theory and evidence," Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 74-93.
    18. Venditti, Alain, 1997. "Strong Concavity Properties of Indirect Utility Functions in Multisector Optimal Growth Models," Journal of Economic Theory, Elsevier, vol. 74(2), pages 349-367, June.
    19. Mukherji, Anjan, 2010. "Stability of the Market Economy in the Presence of Diverse Economic Agents," Working Papers 8, JICA Research Institute.
    20. Yacov Tsur & Amos Zemel, 2017. "Steady state properties of multi‐state economic models," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(2), pages 506-521, May.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmacro:v:28:y:2006:i:1:p:5-22. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/locate/inca/622617 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.