IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Stability Analysis of Continuous-Time Macroeconometric Systems

  • Barnett William A.

    (Washington University in St. Louis)

  • He Yijun

    (Washington University in St. Louis)

There has been increasing interest in continuous-time macroeconometric models. This research investigates stability of the Bergstrom, Nowman, and Wymer continuous-time model of the U.K. when system parameters change. This particularly well-regarded continuous-time macroeconometric model is chosen to assure the empirical and potential policy relevance of the results. Stability analysis is important with this model for understanding the dynamic properties of the system and for determining which parameters are the most important to those dynamic properties. The main objective of this paper is to determine the boundaries of parameters at which instability occurs. Two types of boundaries are found: the transcritical bifurcation boundary and the Hopf bifurcation boundary, corresponding to two different ways that instability occurs when parameter values cross the bifurcation boundary.The existence of the Hopf bifurcation boundary is particularly useful, since Hopf bifurcation may provide explanations for some cyclical phenomena in macroeconomy. Numerical algorithms are designed to locate the stability boundaries, which are displayed in three-dimensional diagrams. A notable and perhaps surprising fact is that both types of bifurcations can coexist with this well-regarded U.K. model--in the same neighborhood of the parameter space.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by De Gruyter in its journal Studies in Nonlinear Dynamics & Econometrics.

Volume (Year): 3 (1999)
Issue (Month): 4 (January)
Pages: 1-22

in new window

Handle: RePEc:bpj:sndecm:v:3:y:1999:i:4:n:1
Contact details of provider: Web page:

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:3:y:1999:i:4:n:1. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.