IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpma/9906008.html
   My bibliography  Save this paper

Stabilization Policy as Bifurcation Selection: Would Keynesian Policy Work if the World Really were Keynesian?

Author

Listed:
  • William A. Barnett

    (Washington University in St. Louis)

  • Yijun He

    (Washington University in St. Louis)

  • .

Abstract

This paper is a follow on to our earlier papers exploring the dynamic properties of the UK continuous time macroeconometric model. This paper is focussed on policy implications. We take the position that the term "stabilization policy" implies that the economy would be unstable without policy, and hence stabilization policy only can be understood as bifurcation to stability, conditionally upon the assumption that the economy would be unstable without that policy bifurcation. We apply the methodology of mathematical bifurcation to investigate this point of view. We conclude that bifurcation selection to stability is more complicated than commonly believed to be the case in much Keynesian economics. However, this conclusion is consistent with common views in the mathematical literature on bifurcation of high dimensional systems.

Suggested Citation

  • William A. Barnett & Yijun He & ., 1999. "Stabilization Policy as Bifurcation Selection: Would Keynesian Policy Work if the World Really were Keynesian?," Macroeconomics 9906008, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpma:9906008
    Note: Type of Document - pdf and ps; prepared on UNIX Sparc TeX;
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/mac/papers/9906/9906008.pdf
    Download Restriction: no

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/mac/papers/9906/9906008.ps.gz
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nieuwenhuis, Herman J. & Schoonbeek, Lambert, 1997. "Stability and the structure of continuous-time economic models," Economic Modelling, Elsevier, vol. 14(3), pages 311-340, July.
    2. Barnett, William A. & Gallant, A. Ronald & Hinich, Melvin J. & Jungeilges, Jochen A. & Kaplan, Daniel T. & Jensen, Mark J., 1997. "A single-blind controlled competition among tests for nonlinearity and chaos," Journal of Econometrics, Elsevier, vol. 82(1), pages 157-192.
    3. Barnett William A. & He Yijun, 1999. "Stability Analysis of Continuous-Time Macroeconometric Systems," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(4), pages 1-22, January.
    4. Grandmont, Jean-Michel, 1985. "On Endogenous Competitive Business Cycles," Econometrica, Econometric Society, vol. 53(5), pages 995-1045, September.
    5. Herbert E. Scarf, 1959. "Some Examples of Global Instability of the Competitive Equilibrium," Cowles Foundation Discussion Papers 79, Cowles Foundation for Research in Economics, Yale University.
    6. Schmitt-Grohe, Stephanie, 1997. "Comparing Four Models of Aggregate Fluctuations due to Self-Fulfilling Expectations," Journal of Economic Theory, Elsevier, vol. 72(1), pages 96-147, January.
    7. Goenka, Aditya & Kelly, David L. & Spear, Stephen E., 1998. "Endogenous Strategic Business Cycles," Journal of Economic Theory, Elsevier, vol. 81(1), pages 97-125, July.
    8. Jean-Michel Grandmont, 1998. "Expectations Formation and Stability of Large Socioeconomic Systems," Econometrica, Econometric Society, vol. 66(4), pages 741-782, July.
    9. Engelbert Dockner & Gustav Feichtinger, 1991. "On the optimality of limit cycles in dynamic economic systems," Journal of Economics, Springer, vol. 53(1), pages 31-50, February.
    10. Benhabib, Jess & Nishimura, Kazuo, 1979. "The hopf bifurcation and the existence and stability of closed orbits in multisector models of optimal economic growth," Journal of Economic Theory, Elsevier, vol. 21(3), pages 421-444, December.
    11. Bergstrom, A. R. & Nowman, K. B. & Wymer, C. R., 1992. "Gaussian estimation of a second order continuous time macroeconometric model of the UK," Economic Modelling, Elsevier, vol. 9(4), pages 313-351, October.
    12. Bergstrom, A. R. & Nowman, K. B. & Wandasiewicz, S., 1994. "Monetary and fiscal policy in a second-order continuous time macroeconometric model of the United Kingdom," Journal of Economic Dynamics and Control, Elsevier, vol. 18(3-4), pages 731-761.
    13. Kydland, Finn E & Prescott, Edward C, 1977. "Rules Rather Than Discretion: The Inconsistency of Optimal Plans," Journal of Political Economy, University of Chicago Press, vol. 85(3), pages 473-491, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barnett William A & Dalkir Mehmet S, 2007. "Gains from Synchronization," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 11(1), pages 28-55, March.
    2. Barnett, William A. & Duzhak, Evgeniya Aleksandrovna, 2008. "Non-robust dynamic inferences from macroeconometric models: Bifurcation stratification of confidence regions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3817-3825.
    3. Peter N. Ireland, 2007. "Commentary on \\"Monetary policy as equilibrium selection\\"," Review, Federal Reserve Bank of St. Louis, vol. 89(Jul), pages 343-348.
    4. He, Yijun & Barnett, William A., 2006. "Singularity bifurcations," Journal of Macroeconomics, Elsevier, vol. 28(1), pages 5-22, March.
    5. William Barnett & Barry E. Jones & Milka Kirova & Travis D. Nesmith & Meenakshi Pasupathy1, 2004. "The Nonlinear Skeletons in the Closet," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 200403, University of Kansas, Department of Economics, revised May 2004.
    6. William A. Barnett & Yijun He, 2002. "Bifurcations in Macroeconomic Models," Macroeconomics 0210006, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William A. Barnett & Yijun He, 1999. "Center Manifold, Stability, and Bifurcations in Continuous Time Macroeconometric Systems," Macroeconomics 9901002, University Library of Munich, Germany.
    2. Barnett, William A. & He, Susan, 2010. "Existence of singularity bifurcation in an Euler-equations model of the United States economy: Grandmont was right," Economic Modelling, Elsevier, vol. 27(6), pages 1345-1354, November.
    3. William Barnett & Evgeniya Duzhak, 2010. "Empirical assessment of bifurcation regions within New Keynesian models," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 45(1), pages 99-128, October.
    4. Barnett, William A. & Duzhak, Evgeniya Aleksandrovna, 2008. "Non-robust dynamic inferences from macroeconometric models: Bifurcation stratification of confidence regions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3817-3825.
    5. William A. Barnett & Yijun He, 2002. "Bifurcations in Macroeconomic Models," Macroeconomics 0210006, University Library of Munich, Germany.
    6. He, Yijun & Barnett, William A., 2006. "Existence of bifurcation in macroeconomic dynamics: Grandmont was right," MPRA Paper 756, University Library of Munich, Germany.
    7. Barnett, William A. & Chen, Guo, 2015. "Bifurcation of Macroeconometric Models and Robustness of Dynamical Inferences," Foundations and Trends(R) in Econometrics, now publishers, vol. 8(1-2), pages 1-144, September.
    8. William Barnett & Morgan Rose, 2005. "Joseph Schumpeter and Modern Nonlinear Dynamics," Method and Hist of Econ Thought 0504001, University Library of Munich, Germany.
    9. He, Yijun & Barnett, William A., 2006. "Singularity bifurcations," Journal of Macroeconomics, Elsevier, vol. 28(1), pages 5-22, March.
    10. Calvet, Laurent-Emmanuel & Grandmont, Jean-Michel & Lemaire, Isabelle, 2018. "Aggregation of heterogenous beliefs, asset pricing, and risk sharing in complete financial markets," Research in Economics, Elsevier, vol. 72(1), pages 117-146.
    11. Barnett, William A. & Eryilmaz, Unal, 2013. "Hopf bifurcation in the Clarida, Gali, and Gertler model," Economic Modelling, Elsevier, vol. 31(C), pages 401-404.
    12. Banerjee, Sanjibani & A. Barnett, William & A. Duzhak, Evgeniya & Gopalan, Ramu, 2011. "Bifurcation analysis of Zellner's Marshallian Macroeconomic Model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(9), pages 1577-1585, September.
    13. Hommes, Cars, 2018. "Behavioral & experimental macroeconomics and policy analysis: a complex systems approach," Working Paper Series 2201, European Central Bank.
    14. William A. Barnett & Yijun He, 1998. "Bifurcations in Continuous-Time Macroeconomic Systems," Macroeconomics 9805018, University Library of Munich, Germany.
    15. Antinolfi, Gaetano & Keister, Todd & Shell, Karl, 2001. "Growth Dynamics and Returns to Scale: Bifurcation Analysis," Journal of Economic Theory, Elsevier, vol. 96(1-2), pages 70-96, January.
    16. Bill Dupor, 2005. "Keynesian Conundrum: Multiplicity and Time Consistent Stabilization," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(1), pages 154-177, January.
    17. Kelly, David L. & Shorish, Jamsheed, 2000. "Stability of Functional Rational Expectations Equilibria," Journal of Economic Theory, Elsevier, vol. 95(2), pages 215-250, December.
    18. Dmitri Kolyuzhnov & Anna Bogomolova, 2004. "Escape Dynamics: A Continuous Time Approximation," Econometric Society 2004 Latin American Meetings 27, Econometric Society.
    19. Angeletos, George-Marios & Calvet, Laurent-Emmanuel, 2005. "Incomplete-market dynamics in a neoclassical production economy," Journal of Mathematical Economics, Elsevier, vol. 41(4-5), pages 407-438, August.
    20. Orrego, Fabrizio, 2011. "Demografía y precios de activos," Revista Estudios Económicos, Banco Central de Reserva del Perú, issue 22, pages 83-101.

    More about this item

    Keywords

    bifurcation stabilization chaos nonlinearity;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpma:9906008. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.