IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v39y2023i4p1874-1894.html
   My bibliography  Save this article

A machine learning-based framework for forecasting sales of new products with short life cycles using deep neural networks

Author

Listed:
  • Elalem, Yara Kayyali
  • Maier, Sebastian
  • Seifert, Ralf W.

Abstract

Demand forecasting is becoming increasingly important as firms launch new products with short life cycles more frequently. This paper provides a framework based on state-of-the-art techniques that enables firms to use quantitative methods to forecast sales of newly launched, short-lived products that are similar to previous products when there is limited availability of historical sales data for the new product. In addition to exploiting historical data using time-series clustering, we perform data augmentation to generate sufficient sales data and consider two quantitative cluster assignment methods. We apply one traditional statistical (ARIMAX) and three machine learning methods based on deep neural networks (DNNs) – long short-term memory, gated recurrent units, and convolutional neural networks. Using two large data sets, we investigate the forecasting methods’ comparative performance and, for the larger data set, show that clustering generally results in substantially lower forecast errors. Our key empirical finding is that simple ARIMAX considerably outperforms the more advanced DNNs, with mean absolute errors up to 21%–24% lower. However, when adding Gaussian white noise in our robustness analysis, we find that ARIMAX’s performance deteriorates dramatically, whereas the considered DNNs display robust performance. Our results provide insights for practitioners on when to use advanced deep learning methods and when to use traditional methods.

Suggested Citation

  • Elalem, Yara Kayyali & Maier, Sebastian & Seifert, Ralf W., 2023. "A machine learning-based framework for forecasting sales of new products with short life cycles using deep neural networks," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1874-1894.
  • Handle: RePEc:eee:intfor:v:39:y:2023:i:4:p:1874-1894
    DOI: 10.1016/j.ijforecast.2022.09.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207022001364
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2022.09.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Qing & Ewing, Bradley T. & Thompson, Mark A., 2012. "Forecasting wind speed with recurrent neural networks," European Journal of Operational Research, Elsevier, vol. 221(1), pages 148-154.
    2. Sanders, Nada R. & Manrodt, Karl B., 2003. "The efficacy of using judgmental versus quantitative forecasting methods in practice," Omega, Elsevier, vol. 31(6), pages 511-522, December.
    3. Fallah Tehrani, Ali & Ahrens, Diane, 2016. "Enhanced predictive models for purchasing in the fashion field by using kernel machine regression equipped with ordinal logistic regression," Journal of Retailing and Consumer Services, Elsevier, vol. 32(C), pages 131-138.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Abbas A. Kurawarwala & Hirofumi Matsuo, 1996. "Forecasting and Inventory Management of Short Life-Cycle Products," Operations Research, INFORMS, vol. 44(1), pages 131-150, February.
    6. Raymond Vernon, 1966. "International Investment and International Trade in the Product Cycle," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 80(2), pages 190-207.
    7. Kahn, Kenneth B., 2014. "Solving the problems of new product forecasting," Business Horizons, Elsevier, vol. 57(5), pages 607-615.
    8. Brian Kenji Iwana & Seiichi Uchida, 2021. "An empirical survey of data augmentation for time series classification with neural networks," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-32, July.
    9. Velibor V. Miv{s}i'c & Georgia Perakis, 2019. "Data Analytics in Operations Management: A Review," Papers 1905.00556, arXiv.org.
    10. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    11. Kraus, Mathias & Feuerriegel, Stefan & Oztekin, Asil, 2020. "Deep learning in business analytics and operations research: Models, applications and managerial implications," European Journal of Operational Research, Elsevier, vol. 281(3), pages 628-641.
    12. Kaijie Zhu & Ulrich W. Thonemann, 2004. "An adaptive forecasting algorithm and inventory policy for products with short life cycles," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(5), pages 633-653, August.
    13. Lennart Baardman & Igor Levin & Georgia Perakis & Divya Singhvi, 2018. "Leveraging Comparables for New Product Sales Forecasting," Production and Operations Management, Production and Operations Management Society, vol. 27(12), pages 2340-2343, December.
    14. Robert Fildes & Paul Goodwin, 2007. "Against Your Better Judgment? How Organizations Can Improve Their Use of Management Judgment in Forecasting," Interfaces, INFORMS, vol. 37(6), pages 570-576, December.
    15. Rink, David R. & Swan, John E., 1979. "Product life cycle research: A literature review," Journal of Business Research, Elsevier, vol. 7(3), pages 219-242, September.
    16. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
    17. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    18. Mario José Basallo-Triana & Jesús Andrés Rodríguez-Sarasty & Hernán Darío Benitez-Restrepo, 2017. "Analogue-based demand forecasting of short life-cycle products: a regression approach and a comprehensive assessment," International Journal of Production Research, Taylor & Francis Journals, vol. 55(8), pages 2336-2350, April.
    19. Eric Stellwagen & Len Tashman, 2013. "ARIMA: The Models of Box and Jenkins," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 30, pages 28-33, Summer.
    20. Peter N. Golder & Gerard J. Tellis, 2004. "Growing, Growing, Gone: Cascades, Diffusion, and Turning Points in the Product Life Cycle," Marketing Science, INFORMS, vol. 23(2), pages 207-218, December.
    21. Yildiz, B. & Bilbao, J.I. & Sproul, A.B., 2017. "A review and analysis of regression and machine learning models on commercial building electricity load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1104-1122.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kejia Hu & Jason Acimovic & Francisco Erize & Douglas J. Thomas & Jan A. Van Mieghem, 2019. "Forecasting New Product Life Cycle Curves: Practical Approach and Empirical Analysis," Service Science, INFORMS, vol. 21(1), pages 66-85, January.
    2. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    3. Pinçe, Çerağ & Turrini, Laura & Meissner, Joern, 2021. "Intermittent demand forecasting for spare parts: A Critical review," Omega, Elsevier, vol. 105(C).
    4. Qin, Ruwen & Nembhard, David A., 2012. "Demand modeling of stochastic product diffusion over the life cycle," International Journal of Production Economics, Elsevier, vol. 137(2), pages 201-210.
    5. Katharina Elisabeth Fischer & Tom Stargardt, 2016. "The diffusion of generics after patent expiry in Germany," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 17(8), pages 1027-1040, November.
    6. S. Buxton & Kostas Nikolopoulos & M. Khammash & P. Stern, 2015. "Modelling and Forecasting Branded and Generic Pharmaceutical Life Cycles: Assessment of the Number of Dispensed Units," Working Papers 15004, Bangor Business School, Prifysgol Bangor University (Cymru / Wales).
    7. Takahashi, Carlos Kazunari & Figueiredo, Júlio César Bastos de & Scornavacca, Eusebio, 2024. "Investigating the diffusion of innovation: A comprehensive study of successive diffusion processes through analysis of search trends, patent records, and academic publications," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    8. Zhiling Guo & Jianqing Chen, 2018. "Multigeneration Product Diffusion in the Presence of Strategic Consumers," Information Systems Research, INFORMS, vol. 29(1), pages 206-224, March.
    9. Andrea Savio & Luigi De Giovanni & Mariangela Guidolin, 2022. "Modelling Energy Transition in Germany: An Analysis through Ordinary Differential Equations and System Dynamics," Forecasting, MDPI, vol. 4(2), pages 1-18, April.
    10. Laciana, Carlos E. & Rovere, Santiago L. & Podestá, Guillermo P., 2013. "Exploring associations between micro-level models of innovation diffusion and emerging macro-level adoption patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1873-1884.
    11. Rui Leite & Aurora Teixeira, 2012. "Innovation diffusion with heterogeneous networked agents: a computational model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 7(2), pages 125-144, October.
    12. Goodwin, Paul & Meeran, Sheik & Dyussekeneva, Karima, 2014. "The challenges of pre-launch forecasting of adoption time series for new durable products," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1082-1097.
    13. Chandrasekaran, Deepa & Arts, Joep W.C. & Tellis, Gerard J. & Frambach, Ruud T., 2013. "Pricing in the international takeoff of new products," International Journal of Research in Marketing, Elsevier, vol. 30(3), pages 249-264.
    14. Riikonen, Antti & Smura, Timo & Kivi, Antero & Töyli, Juuso, 2013. "Diffusion of mobile handset features: Analysis of turning points and stages," Telecommunications Policy, Elsevier, vol. 37(6), pages 563-572.
    15. Lim, Hyungsoo & Jun, Duk Bin & Hamoudia, Mohsen, 2019. "A choice-based diffusion model for multi-generation and multi-country data," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 163-173.
    16. Baecke, Philippe & De Baets, Shari & Vanderheyden, Karlien, 2017. "Investigating the added value of integrating human judgement into statistical demand forecasting systems," International Journal of Production Economics, Elsevier, vol. 191(C), pages 85-96.
    17. Sohn, So Young & Lim, Michael, 2008. "The effect of forecasting and information sharing in SCM for multi-generation products," European Journal of Operational Research, Elsevier, vol. 186(1), pages 276-287, April.
    18. Constanza Fosco, 2012. "Spatial Difusion and Commuting Flows," Documentos de Trabajo en Economia y Ciencia Regional 30, Universidad Catolica del Norte, Chile, Department of Economics, revised Sep 2012.
    19. Edouard Civel & Marc Baudry, 2018. "The Fate of Inventions. What can we learn from Bayesian learning in strategic options model of adoption ?," EconomiX Working Papers 2018-47, University of Paris Nanterre, EconomiX.
    20. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:39:y:2023:i:4:p:1874-1894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.