IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v37y2007i6p570-576.html
   My bibliography  Save this article

Against Your Better Judgment? How Organizations Can Improve Their Use of Management Judgment in Forecasting

Author

Listed:
  • Robert Fildes

    (Department of Management Science, Lancaster University Management School, Lancaster LAI 4YX, United Kingdom)

  • Paul Goodwin

    (Management School, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom)

Abstract

Accurate forecasts are crucial to successful organizational planning. In 2001, 40 international experts published a set of principles to guide best practices in forecasting. Some of these principles relate to the use of management judgment. Most organizations use judgment at some stage in their forecasting process, but do they do so effectively? Although judgment can lead to significant improvements in forecasting accuracy, it can also be biased and inconsistent. The principles show how forecasters should use judgment and assess its effectiveness. We conducted a survey of 149 forecasters to examine the use of judgment based on these established principles and to investigate whether their forecasting procedures were consistent with the principles. In addition, we conducted four in-depth case studies. Although we found examples of good practice, we also discovered that many organizations would improve forecast accuracy if they followed basic principles such as limiting judgmental adjustments of quantitative forecasts, requiring managers to justify their adjustments in writing, and assessing the results of judgmental interventions.

Suggested Citation

  • Robert Fildes & Paul Goodwin, 2007. "Against Your Better Judgment? How Organizations Can Improve Their Use of Management Judgment in Forecasting," Interfaces, INFORMS, vol. 37(6), pages 570-576, December.
  • Handle: RePEc:inm:orinte:v:37:y:2007:i:6:p:570-576
    DOI: 10.1287/inte.1070.0309
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.1070.0309
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.1070.0309?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nada R. Sanders & Karl B. Manrodt, 2003. "Forecasting Software in Practice: Use, Satisfaction, and Performance," Interfaces, INFORMS, vol. 33(5), pages 90-93, October.
    2. Nada R. Sanders & Karl B. Manrodt, 1994. "Forecasting Practices in US Corporations: Survey Results," Interfaces, INFORMS, vol. 24(2), pages 92-100, April.
    3. J. Scott Armstrong & Ruth Pagell, 2003. "The Ombudsman: Reaping Benefits from Management Research: Lessons from the Forecasting Principles Project," Interfaces, INFORMS, vol. 33(6), pages 91-111, December.
    4. Yokuma, J. Thomas & Armstrong, J. Scott, 1995. "Beyond accuracy: Comparison of criteria used to select forecasting methods," International Journal of Forecasting, Elsevier, vol. 11(4), pages 591-597, December.
    5. Lawrence, Michael & Goodwin, Paul & O'Connor, Marcus & Onkal, Dilek, 2006. "Judgmental forecasting: A review of progress over the last 25 years," International Journal of Forecasting, Elsevier, vol. 22(3), pages 493-518.
    6. Goodwin, P., 1996. "Statistical correction of judgmental point forecasts and decisions," Omega, Elsevier, vol. 24(5), pages 551-559, October.
    7. Chatfield, Chris, 1988. "Apples, oranges and mean square error," International Journal of Forecasting, Elsevier, vol. 4(4), pages 515-518.
    8. Fildes, Robert & Bretschneider, Stuart & Collopy, Fred & Lawrence, Michael & Stewart, Doug & Winklhofer, Heidi & Mentzer, John T. & Moon, Mark A., 2003. "Researching Sales Forecasting Practice: Commentaries and authors' response on "Conducting a Sales Forecasting Audit" by M.A. Moon, J.T. Mentzer & C.D. Smith," International Journal of Forecasting, Elsevier, vol. 19(1), pages 27-42.
    9. Donna F. Davis & John T. Mentzer & Teresa M. Mccarthy & Susan L. Golicic, 2006. "The evolution of sales forecasting management: a 20-year longitudinal study of forecasting practices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(5), pages 303-324.
    10. Syntetos, Aris A. & Boylan, John E., 2005. "The accuracy of intermittent demand estimates," International Journal of Forecasting, Elsevier, vol. 21(2), pages 303-314.
    11. Fildes, Robert, 2006. "The forecasting journals and their contribution to forecasting research: Citation analysis and expert opinion," International Journal of Forecasting, Elsevier, vol. 22(3), pages 415-432.
    12. Armstrong, J. Scott, 2006. "Findings from evidence-based forecasting: Methods for reducing forecast error," International Journal of Forecasting, Elsevier, vol. 22(3), pages 583-598.
    13. Thomas Ross, 2005. "The Sales Forecasting Evolution at Brooks Sports," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 1, pages 24-28, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arvan, Meysam & Fahimnia, Behnam & Reisi, Mohsen & Siemsen, Enno, 2019. "Integrating human judgement into quantitative forecasting methods: A review," Omega, Elsevier, vol. 86(C), pages 237-252.
    2. Perera, H. Niles & Hurley, Jason & Fahimnia, Behnam & Reisi, Mohsen, 2019. "The human factor in supply chain forecasting: A systematic review," European Journal of Operational Research, Elsevier, vol. 274(2), pages 574-600.
    3. Eksoz, Can & Mansouri, S. Afshin & Bourlakis, Michael & Önkal, Dilek, 2019. "Judgmental adjustments through supply integration for strategic partnerships in food chains," Omega, Elsevier, vol. 87(C), pages 20-33.
    4. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    5. A A Syntetos & J E Boylan & S M Disney, 2009. "Forecasting for inventory planning: a 50-year review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 149-160, May.
    6. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
    7. JS Armstrong & Fred Collopy, 2004. "Integration of Statistical Methods and Judgment for Time Series," General Economics and Teaching 0412024, University Library of Munich, Germany.
    8. F Caniato & M Kalchschmidt & S Ronchi, 2011. "Integrating quantitative and qualitative forecasting approaches: organizational learning in an action research case," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 413-424, March.
    9. Song, Haiyan & Gao, Bastian Z. & Lin, Vera S., 2013. "Combining statistical and judgmental forecasts via a web-based tourism demand forecasting system," International Journal of Forecasting, Elsevier, vol. 29(2), pages 295-310.
    10. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    11. Leitner, Johannes & Leopold-Wildburger, Ulrike, 2011. "Experiments on forecasting behavior with several sources of information - A review of the literature," European Journal of Operational Research, Elsevier, vol. 213(3), pages 459-469, September.
    12. Fildes, Robert & Goodwin, Paul & Lawrence, Michael & Nikolopoulos, Konstantinos, 2009. "Effective forecasting and judgmental adjustments: an empirical evaluation and strategies for improvement in supply-chain planning," International Journal of Forecasting, Elsevier, vol. 25(1), pages 3-23.
    13. Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011. "Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660.
    14. Syntetos, Aris A. & Nikolopoulos, Konstantinos & Boylan, John E. & Fildes, Robert & Goodwin, Paul, 2009. "The effects of integrating management judgement into intermittent demand forecasts," International Journal of Production Economics, Elsevier, vol. 118(1), pages 72-81, March.
    15. De Baets, Shari & Harvey, Nigel, 2018. "Forecasting from time series subject to sporadic perturbations: Effectiveness of different types of forecasting support," International Journal of Forecasting, Elsevier, vol. 34(2), pages 163-180.
    16. Pennings, Clint L.P. & van Dalen, Jan & Rook, Laurens, 2019. "Coordinating judgmental forecasting: Coping with intentional biases," Omega, Elsevier, vol. 87(C), pages 46-56.
    17. Blanc, Sebastian M. & Setzer, Thomas, 2015. "Analytical debiasing of corporate cash flow forecasts," European Journal of Operational Research, Elsevier, vol. 243(3), pages 1004-1015.
    18. Goodwin, Paul & Lawton, Richard, 1999. "On the asymmetry of the symmetric MAPE," International Journal of Forecasting, Elsevier, vol. 15(4), pages 405-408, October.
    19. Emrouznejad, Ali & Rostami-Tabar, Bahman & Petridis, Konstantinos, 2016. "A novel ranking procedure for forecasting approaches using Data Envelopment Analysis," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 235-243.
    20. Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.

    More about this item

    Keywords

    applications; forecasting;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:37:y:2007:i:6:p:570-576. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Matthew Walls (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.