IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v211y2020ics0360544220317400.html
   My bibliography  Save this article

Orderly-synergistic development of power generation industry: A China’s case study based on evolutionary game model

Author

Listed:
  • Pingkuo, Liu
  • Huan, Peng
  • Zhiwei, Wang

Abstract

Different from the expectations of energy development in other industrialized countries, China is pursuing an orderly-synergistic energy transition. The necessity and effect of orderliness-synergy in the sustainable development of China’s power generation industry during the transition period is focused in this paper. The orderly-synergistic development process can be regarded as the game of interest balance for both the clean energy power generation enterprises and the thermal power generation ones. Hence evolutionary game method with six Assumptions, basic model and normative analysis is adopted. And then to explain the process more scientifically, the numerical simulation with scenario analysis is used to study two types of power generation enterprises. Three important conclusions are drawn: (1) when two types of power generation enterprises make the “same direction” decision at the same time, the population stability can be formed within the industry; (2) the revenues of both clean power generation enterprises and thermal power generation enterprises have shown a positive correlation with adopting active strategies; (3) when the power generation industry tends to the policy orientation, the orderly-synergistic benefits will be smaller, however, when the power generation industry tends to the market orientation, the orderly-synergistic benefits will be greater. And then some recommendations are put forward.

Suggested Citation

  • Pingkuo, Liu & Huan, Peng & Zhiwei, Wang, 2020. "Orderly-synergistic development of power generation industry: A China’s case study based on evolutionary game model," Energy, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220317400
    DOI: 10.1016/j.energy.2020.118632
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220317400
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118632?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Bjørnebye, Henrik & Hagem, Cathrine & Lind, Arne, 2018. "Optimal location of renewable power," Energy, Elsevier, vol. 147(C), pages 1203-1215.
    2. Johari, Maryam & Hosseini-Motlagh, Seyyed-Mahdi & Rasti-Barzoki, Morteza, 2019. "An evolutionary game theoretic model for analyzing pricing strategy and socially concerned behavior of manufacturers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 506-525.
    3. Ahn, Joongha & Woo, JongRoul & Lee, Jongsu, 2015. "Optimal allocation of energy sources for sustainable development in South Korea: Focus on the electric power generation industry," Energy Policy, Elsevier, vol. 78(C), pages 78-90.
    4. Gulagi, Ashish & Ram, Manish & Solomon, A.A. & Khan, Musharof & Breyer, Christian, 2020. "Current energy policies and possible transition scenarios adopting renewable energy: A case study for Bangladesh," Renewable Energy, Elsevier, vol. 155(C), pages 899-920.
    5. repec:zbw:rwirep:0542 is not listed on IDEAS
    6. Dini, Anoosh & Pirouzi, Sasan & Norouzi, Mohammadali & Lehtonen, Matti, 2019. "Grid-connected energy hubs in the coordinated multi-energy management based on day-ahead market framework," Energy, Elsevier, vol. 188(C).
    7. Geels, Frank W. & Kern, Florian & Fuchs, Gerhard & Hinderer, Nele & Kungl, Gregor & Mylan, Josephine & Neukirch, Mario & Wassermann, Sandra, 2016. "The enactment of socio-technical transition pathways: A reformulated typology and a comparative multi-level analysis of the German and UK low-carbon electricity transitions (1990–2014)," Research Policy, Elsevier, vol. 45(4), pages 896-913.
    8. Jorgen W. Weibull, 1997. "Evolutionary Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262731215, December.
    9. Manuel Frondel & Stephan Sommer & Colin Vance, 2015. "The burden of Germanyùs energy transition: An empirical analysis of distributional effects," Economic Analysis and Policy, Elsevier, vol. 45(c), pages 89-99.
    10. Willenbockel, Dirk, 2017. "Macroeconomic Effects of a Low-Carbon Electricity Transition in Kenya and Ghana: An Exploratory Dynamic General Equilibrium Analysis," MPRA Paper 78070, University Library of Munich, Germany.
    11. Helgesen, Per Ivar & Tomasgard, Asgeir, 2018. "An equilibrium market power model for power markets and tradable green certificates, including Kirchhoff's Laws and Nash-Cournot competition," Energy Economics, Elsevier, vol. 70(C), pages 270-288.
    12. Khaloie, Hooman & Abdollahi, Amir & Shafie-khah, Miadreza & Anvari-Moghaddam, Amjad & Nojavan, Sayyad & Siano, Pierluigi & Catalão, João P.S., 2020. "Coordinated wind-thermal-energy storage offering strategy in energy and spinning reserve markets using a multi-stage model," Applied Energy, Elsevier, vol. 259(C).
    13. Manuel Frondel & Stephan Sommer & Colin Vance, 2015. "The Burden of Germany’s Energy Transition – An Empirical Analysis of Distributional Effects," Ruhr Economic Papers 0542, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    14. Hoggett, Richard, 2014. "Technology scale and supply chains in a secure, affordable and low carbon energy transition," Applied Energy, Elsevier, vol. 123(C), pages 296-306.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jicheng & Sun, Jiakang & Yuan, Hanying & Su, Yihan & Feng, Shuxian & Lu, Chaoran, 2022. "Behavior analysis of photovoltaic-storage-use value chain game evolution in blockchain environment," Energy, Elsevier, vol. 260(C).
    2. Yang, Peiwen & Dong, Jun & Lin, Jin & Liu, Yao & Fang, Debin, 2021. "Analysis of offering behavior of generation-side integrated energy aggregator in electricity market:A Bayesian evolutionary approach," Energy, Elsevier, vol. 228(C).
    3. Fushuai Wang & Wenxia Cai & Ehsan Elahi, 2021. "Do Green Finance and Environmental Regulation Play a Crucial Role in the Reduction of CO 2 Emissions? An Empirical Analysis of 126 Chinese Cities," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    4. Yue, Tingyi & Wang, Honglei & Li, Chengjiang & Hu, Yu-jie, 2024. "Optimization strategies for green power and certificate trading in China considering seasonality: An evolutionary game-based system dynamics," Energy, Elsevier, vol. 311(C).
    5. Yuly V. Garcia & Oscar Garzon & Carlos J. Delgado & Jan L. Diaz & Cesar A. Vega Penagos & Fabio Andrade & Adriana C. Luna & J. C. Hernandez, 2023. "Overview on Transactive Energy—Advantages and Challenges for Weak Power Grids," Energies, MDPI, vol. 16(12), pages 1-19, June.
    6. Yang, Weixin & Yang, Yunpeng & Chen, Hongmin, 2022. "How to stimulate Chinese energy companies to comply with emission regulations? Evidence from four-party evolutionary game analysis," Energy, Elsevier, vol. 258(C).
    7. Wang, Yadong & Mao, Jinqi & Chen, Fan & Wang, Delu, 2022. "Uncovering the dynamics and uncertainties of substituting coal power with renewable energy resources," Renewable Energy, Elsevier, vol. 193(C), pages 669-686.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Kai & Tan, Xiujie & Yan, Yaxue & Jiang, Dalin & Qi, Shaozhou, 2022. "Directing energy transition toward decarbonization: The China story," Energy, Elsevier, vol. 261(PA).
    2. Yang, Peiwen & Dong, Jun & Lin, Jin & Liu, Yao & Fang, Debin, 2021. "Analysis of offering behavior of generation-side integrated energy aggregator in electricity market:A Bayesian evolutionary approach," Energy, Elsevier, vol. 228(C).
    3. Dufwenberg, Martin, 1997. "Some relationships between evolutionary stability criteria in games," Economics Letters, Elsevier, vol. 57(1), pages 45-50, November.
    4. Lichi Zhang & Yanyan Jiang & Junmin Wu, 2022. "Evolutionary Game Analysis of Government and Residents’ Participation in Waste Separation Based on Cumulative Prospect Theory," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    5. Gu, Tianqi & Xu, Weiping & Liang, Hua & He, Qing & Zheng, Nan, 2024. "School bus transport service strategies’ policy-making mechanism – An evolutionary game approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    6. Zhang, Mengdi & Yang, Wanting & Zhao, Zhiheng & Wang, Shuaian & Huang, George Q., 2024. "Do fairness concerns matter for ESG decision-making? Strategic interactions in digital twin-enabled sustainable semiconductor supply chain," International Journal of Production Economics, Elsevier, vol. 276(C).
    7. Capellán-Pérez, Iñigo & Campos-Celador, Álvaro & Terés-Zubiaga, Jon, 2018. "Renewable Energy Cooperatives as an instrument towards the energy transition in Spain," Energy Policy, Elsevier, vol. 123(C), pages 215-229.
    8. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2021. "A D2C algorithm on the natural gas consumption and economic growth: Challenges faced by Germany and Japan," Energy, Elsevier, vol. 219(C).
    9. Frondel Manuel & Kutzschbauch Ole & Sommer Stephan & Traub Stefan, 2017. "Die Gerechtigkeitslücke in der Verteilung der Kosten der Energiewende auf die privaten Haushalte," Perspektiven der Wirtschaftspolitik, De Gruyter, vol. 18(4), pages 335-347, November.
    10. Kulsum, Umma & Alam, Muntasir & Kamrujjaman, Md., 2024. "Modeling and investigating the dilemma of early and delayed vaccination driven by the dynamics of imitation and aspiration," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    11. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    12. Guohui Song & Yongbin Wang, 2021. "Mainstream Value Information Push Strategy on Chinese Aggregation News Platform: Evolution, Modelling and Analysis," Sustainability, MDPI, vol. 13(19), pages 1-17, October.
    13. Sandholm,W.H., 2003. "Excess payoff dynamics, potential dynamics, and stable games," Working papers 5, Wisconsin Madison - Social Systems.
    14. Angelo Antoci & Simone Borghesi & Marcello Galeotti, 2013. "Environmental options and technological innovation: an evolutionary game model," Journal of Evolutionary Economics, Springer, vol. 23(2), pages 247-269, April.
    15. Hui Yu & Wei Wang & Baohua Yang & Cunfang Li, 2019. "Evolutionary Game Analysis of the Stress Effect of Cross-Regional Transfer of Resource-Exhausted Enterprises," Complexity, Hindawi, vol. 2019, pages 1-16, November.
    16. Müller, Stephan, 2014. "The evolution of inequality aversion in a simplified game of life," University of Göttingen Working Papers in Economics 219, University of Goettingen, Department of Economics.
    17. Amit Te’eni & Bar Y Peled & Eliahu Cohen & Avishy Carmi, 2023. "Study of entanglement via a multi-agent dynamical quantum game," PLOS ONE, Public Library of Science, vol. 18(1), pages 1-18, January.
    18. Witte, Björn-Christopher, 2012. "Fund managers - Why the best might be the worst: On the evolutionary vigor of risk-seeking behavior," Economics Discussion Papers 2012-20, Kiel Institute for the World Economy (IfW Kiel).
    19. Zhu, Jianquan & Xia, Yunrui & Mo, Xiemin & Guo, Ye & Chen, Jiajun, 2021. "A bilevel bidding and clearing model incorporated with a pricing strategy for the trading of energy storage use rights," Energy, Elsevier, vol. 235(C).
    20. Andrei, Mariana & Rohdin, Patrik & Thollander, Patrik & Wallin, Johanna & Tångring, Magnus, 2024. "Exploring a decarbonization framework for a Swedish automotive paint shop," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220317400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.