IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v260y2022ics0360544222020734.html
   My bibliography  Save this article

Behavior analysis of photovoltaic-storage-use value chain game evolution in blockchain environment

Author

Listed:
  • Liu, Jicheng
  • Sun, Jiakang
  • Yuan, Hanying
  • Su, Yihan
  • Feng, Shuxian
  • Lu, Chaoran

Abstract

In view of the stability of photovoltaic utilization and trust in transactions, this paper constructed a photovoltaic-storage-use value chain in the block chain environment, and studied the behavioral strategies of photovoltaic power generators, energy storage providers and users in the value chain by using a three-party evolutionary game model. This paper analyzes the influence of the initial willingness of game players, the cost and utilization degree of blockchain technology, government subsidies, the price reduction coefficient of users, and the loss of photovoltaic-storage being wholesaled on the results of evolutionary equilibrium. The results show the cooperation between photovoltaic power generators and energy storage providers will become one of the trends of photovoltaic development in the future, and users will greatly enhance the utilization degree of photovoltaic and realize the value co-creation of the three parties. The decrease of blockchain technology cost, the increase of blockchain utilization, the increase of government subsidies, the increase of user price reduction coefficient, the decrease of photovoltaic-storage loss coefficient of being wholesaled and so on encourage the increase of cooperation of photovoltaic power generators and energy storage providers, and users' behavior of using photovoltaic. These results can provide some reference for the development of photovoltaic and energy storage industry.

Suggested Citation

  • Liu, Jicheng & Sun, Jiakang & Yuan, Hanying & Su, Yihan & Feng, Shuxian & Lu, Chaoran, 2022. "Behavior analysis of photovoltaic-storage-use value chain game evolution in blockchain environment," Energy, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:energy:v:260:y:2022:i:c:s0360544222020734
    DOI: 10.1016/j.energy.2022.125182
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222020734
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125182?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Friedman, 1998. "On economic applications of evolutionary game theory," Journal of Evolutionary Economics, Springer, vol. 8(1), pages 15-43.
    2. Zhang, Dahai & Wang, Jiaqi & Lin, Yonggang & Si, Yulin & Huang, Can & Yang, Jing & Huang, Bin & Li, Wei, 2017. "Present situation and future prospect of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 865-871.
    3. Pingkuo, Liu & Huan, Peng & Zhiwei, Wang, 2020. "Orderly-synergistic development of power generation industry: A China’s case study based on evolutionary game model," Energy, Elsevier, vol. 211(C).
    4. Li, Jingjing & Jiao, Jianling & Tang, Yunshu, 2019. "An evolutionary analysis on the effect of government policies on electric vehicle diffusion in complex network," Energy Policy, Elsevier, vol. 129(C), pages 1-12.
    5. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    6. Shan, Haiyan & Yang, Junliang, 2019. "Sustainability of photovoltaic poverty alleviation in China: An evolutionary game between stakeholders," Energy, Elsevier, vol. 181(C), pages 264-280.
    7. Zhao, Tian & Liu, Zhixin, 2019. "A novel analysis of carbon capture and storage (CCS) technology adoption: An evolutionary game model between stakeholders," Energy, Elsevier, vol. 189(C).
    8. Jiang, Yanni & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "Electricity trading pricing among prosumers with game theory-based model in energy blockchain environment," Applied Energy, Elsevier, vol. 271(C).
    9. Hou, Jianchao & Wang, Che & Luo, Sai, 2020. "How to improve the competiveness of distributed energy resources in China with blockchain technology," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    10. Tang, Songlin & Zhou, Wenbing & Li, Xinjin & Chen, Yingchao & Zhang, Qian & Zhang, Xiliang, 2021. "Subsidy strategy for distributed photovoltaics: A combined view of cost change and economic development," Energy Economics, Elsevier, vol. 97(C).
    11. Lei Gao & Zhen-Yu Zhao, 2020. "The Evolutionary Game of Stakeholders’ Coordination Mechanism of New Energy Power Construction PPP Project: A China Case," Sustainability, MDPI, vol. 12(3), pages 1-24, February.
    12. Lee Won Park & Sanghoon Lee & Hangbae Chang, 2018. "A Sustainable Home Energy Prosumer-Chain Methodology with Energy Tags over the Blockchain," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    13. Asma Khatoon & Piyush Verma & Jo Southernwood & Beth Massey & Peter Corcoran, 2019. "Blockchain in Energy Efficiency: Potential Applications and Benefits," Energies, MDPI, vol. 12(17), pages 1-14, August.
    14. Robert Małkowski & Marcin Jaskólski & Wojciech Pawlicki, 2020. "Operation of the Hybrid Photovoltaic-Battery System on the Electricity Market—Simulation, Real-Time Tests and Cost Analysis," Energies, MDPI, vol. 13(6), pages 1-21, March.
    15. Huang, Xingjun & Lin, Yun & Lim, Ming K. & Zhou, Fuli & Ding, Rui & Zhang, Zusheng, 2022. "Evolutionary dynamics of promoting electric vehicle-charging infrastructure based on public–private partnership cooperation," Energy, Elsevier, vol. 239(PD).
    16. Noor, Sana & Yang, Wentao & Guo, Miao & van Dam, Koen H. & Wang, Xiaonan, 2018. "Energy Demand Side Management within micro-grid networks enhanced by blockchain," Applied Energy, Elsevier, vol. 228(C), pages 1385-1398.
    17. Yang, Yunpeng & Yang, Weixin & Chen, Hongmin & Li, Yin, 2020. "China’s energy whistleblowing and energy supervision policy: An evolutionary game perspective," Energy, Elsevier, vol. 213(C).
    18. Fugui Dong & Lei Shi & Xiaohui Ding & Yuan Li & Yongpeng Shi, 2019. "Study on China’s Renewable Energy Policy Reform and Improved Design of Renewable Portfolio Standard," Energies, MDPI, vol. 12(11), pages 1-23, June.
    19. Dehghani, Ehsan & Jabalameli, Mohammad Saeed & Jabbarzadeh, Armin, 2018. "Robust design and optimization of solar photovoltaic supply chain in an uncertain environment," Energy, Elsevier, vol. 142(C), pages 139-156.
    20. Ante, L. & Steinmetz, F. & Fiedler, I., 2021. "Blockchain and energy: A bibliometric analysis and review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    21. Marco Schletz & Ana Cardoso & Gabriela Prata Dias & Søren Salomo, 2020. "How Can Blockchain Technology Accelerate Energy Efficiency Interventions? A Use Case Comparison," Energies, MDPI, vol. 13(22), pages 1-23, November.
    22. Fang, Yujuan & Chen, Laijun & Mei, Shengwei & Wei, Wei & Huang, Shaowei & Liu, Feng, 2019. "Coal or electricity? An evolutionary game approach to investigate fuel choices of urban heat supply systems," Energy, Elsevier, vol. 181(C), pages 107-122.
    23. Wenting Zhao & Jun Lv & Xilong Yao & Juanjuan Zhao & Zhixin Jin & Yan Qiang & Zheng Che & Chunwu Wei, 2019. "Consortium Blockchain-Based Microgrid Market Transaction Research," Energies, MDPI, vol. 12(20), pages 1-22, October.
    24. Yuki Matsuda & Yuto Yamazaki & Hiromu Oki & Yasuhiro Takeda & Daishi Sagawa & Kenji Tanaka, 2021. "Demonstration of Blockchain Based Peer to Peer Energy Trading System with Real-Life Used PHEV and HEMS Charge Control," Energies, MDPI, vol. 14(22), pages 1-12, November.
    25. Wang, Gang & Chao, Yuechao & Chen, Zeshao, 2021. "Promoting developments of hydrogen powered vehicle and solar PV hydrogen production in China: A study based on evolutionary game theory method," Energy, Elsevier, vol. 237(C).
    26. Ji, Shou-feng & Zhao, Dan & Luo, Rong-juan, 2019. "Evolutionary game analysis on local governments and manufacturers' behavioral strategies: Impact of phasing out subsidies for new energy vehicles," Energy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinghong Zhou & Ke Chen & Weidong Wang, 2023. "A Power Evolution Game Model and Its Application Contained in Virtual Power Plants," Energies, MDPI, vol. 16(11), pages 1-22, May.
    2. Jing Yu & Jicheng Liu & Yajing Wen & Xue Yu, 2023. "Economic Optimal Coordinated Dispatch of Power for Community Users Considering Shared Energy Storage and Demand Response under Blockchain," Sustainability, MDPI, vol. 15(8), pages 1-26, April.
    3. Zhao, Leilei & Xue, Yixun & Sun, Hongbin & Du, Yuan & Chang, Xinyue & Su, Jia & Li, Zening, 2023. "Benefit allocation for combined heat and power dispatch considering mutual trust," Applied Energy, Elsevier, vol. 345(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yadong & Mao, Jinqi & Chen, Fan & Wang, Delu, 2022. "Uncovering the dynamics and uncertainties of substituting coal power with renewable energy resources," Renewable Energy, Elsevier, vol. 193(C), pages 669-686.
    2. Shuai Nie & Guotian Cai & Yixuan Li & Yushu Chen & Ruxue Bai & Liping Gao & Xiaoyu Chen, 2022. "To Adopt CCU Technology or Not? An Evolutionary Game between Local Governments and Coal-Fired Power Plants," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    3. Rodrigues, Stefane Dias & Garcia, Vinicius Jacques, 2023. "Transactive energy in microgrid communities: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    4. Liu, Yang & Cui, Mengying & Gao, Xubin, 2023. "Building up scrap steel bases for perfecting scrap steel industry chain in China: An evolutionary game perspective," Energy, Elsevier, vol. 278(C).
    5. Yang, Yunpeng & Yang, Weixin & Chen, Hongmin & Li, Yin, 2020. "China’s energy whistleblowing and energy supervision policy: An evolutionary game perspective," Energy, Elsevier, vol. 213(C).
    6. Yan Chen & Menglin Zhan & Yue Liu, 2023. "Promoting the Development of China’s New-Energy Vehicle Industry in the Post-Subsidy Era: A Study Based on the Evolutionary Game Theory Method," Energies, MDPI, vol. 16(15), pages 1-15, August.
    7. Li, Fangyi & Cao, Xin & Ou, Rui, 2021. "A network-based evolutionary analysis of the diffusion of cleaner energy substitution in enterprises: The roles of PEST factors," Energy Policy, Elsevier, vol. 156(C).
    8. Kirli, Desen & Couraud, Benoit & Robu, Valentin & Salgado-Bravo, Marcelo & Norbu, Sonam & Andoni, Merlinda & Antonopoulos, Ioannis & Negrete-Pincetic, Matias & Flynn, David & Kiprakis, Aristides, 2022. "Smart contracts in energy systems: A systematic review of fundamental approaches and implementations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. Roth, Tamara & Utz, Manuel & Baumgarte, Felix & Rieger, Alexander & Sedlmeir, Johannes & Strüker, Jens, 2022. "Electricity powered by blockchain: A review with a European perspective," Applied Energy, Elsevier, vol. 325(C).
    10. Du, Qiang & Wang, Yalei & Pang, Qiaoyu & Hao, Tingting & Zhou, Yuqing, 2023. "The dynamic analysis on low-carbon building adoption under emission trading scheme," Energy, Elsevier, vol. 263(PC).
    11. Yang, Peiwen & Dong, Jun & Lin, Jin & Liu, Yao & Fang, Debin, 2021. "Analysis of offering behavior of generation-side integrated energy aggregator in electricity market:A Bayesian evolutionary approach," Energy, Elsevier, vol. 228(C).
    12. Liu, Changyu & Song, Yadong & Wang, Wei & Shi, Xunpeng, 2023. "The governance of manufacturers’ greenwashing behaviors: A tripartite evolutionary game analysis of electric vehicles," Applied Energy, Elsevier, vol. 333(C).
    13. Tao Li & Lei Ma & Zheng Liu & Chaonan Yi & Kaitong Liang, 2023. "Dual Carbon Goal-Based Quadrilateral Evolutionary Game: Study on the New Energy Vehicle Industry in China," IJERPH, MDPI, vol. 20(4), pages 1-16, February.
    14. Li-cai Lei & Shang Gao & En-yu Zeng, 2020. "Regulation strategies of ride-hailing market in China: an evolutionary game theoretic perspective," Electronic Commerce Research, Springer, vol. 20(3), pages 535-563, September.
    15. Huang, Xingjun & Lin, Yun & Lim, Ming K. & Zhou, Fuli & Liu, Feng, 2022. "Electric vehicle charging station diffusion: An agent-based evolutionary game model in complex networks," Energy, Elsevier, vol. 257(C).
    16. Robert Karaszewski & Paweł Modrzyński & Joanna Modrzyńska, 2021. "The Use of Blockchain Technology in Public Sector Entities Management: An Example of Security and Energy Efficiency in Cloud Computing Data Processing," Energies, MDPI, vol. 14(7), pages 1-19, March.
    17. Yildizbasi, Abdullah, 2021. "Blockchain and renewable energy: Integration challenges in circular economy era," Renewable Energy, Elsevier, vol. 176(C), pages 183-197.
    18. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    19. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Hubacek, Klaus, 2022. "Strategies for applying carbon trading to the new energy vehicle market in China: An improved evolutionary game analysis for the bus industry," Energy, Elsevier, vol. 259(C).
    20. Yingxia Xue & Fang Liu & Guangbin Wang & Jungang Shao, 2023. "Research on Strategy Evolution of Contractor and Resident in Construction Stage of Old Community Renovation Project," Sustainability, MDPI, vol. 15(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:260:y:2022:i:c:s0360544222020734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.