IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v32y2004i3p367-382.html
   My bibliography  Save this article

Fossil electricity and CO2 sequestration: how natural gas prices, initial conditions and retrofits determine the cost of controlling CO2 emissions

Author

Listed:
  • Johnson, Timothy L.
  • Keith, David W.

Abstract

No abstract is available for this item.

Suggested Citation

  • Johnson, Timothy L. & Keith, David W., 2004. "Fossil electricity and CO2 sequestration: how natural gas prices, initial conditions and retrofits determine the cost of controlling CO2 emissions," Energy Policy, Elsevier, vol. 32(3), pages 367-382, February.
  • Handle: RePEc:eee:enepol:v:32:y:2004:i:3:p:367-382
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(02)00298-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Denny Ellerman, A., 1996. "The competition between coal and natural gas the importance of sunk costs," Resources Policy, Elsevier, vol. 22(1-2), pages 33-42.
    2. Grubler, Arnulf & Nakicenovic, Nebojsa & Victor, David G., 1999. "Dynamics of energy technologies and global change," Energy Policy, Elsevier, vol. 27(5), pages 247-280, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lohwasser, Richard & Madlener, Reinhard, 2009. "Impact of CCS on the Economics of Coal-Fired Power Plants: Why Investment Costs Do and Efficiency Doesn’t Matter," FCN Working Papers 7/2009, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    2. Siefert, Nicholas S. & Chang, Brian Y. & Litster, Shawn, 2014. "Exergy and economic analysis of a CaO-looping gasifier for IGFC–CCS and IGCC–CCS," Applied Energy, Elsevier, vol. 128(C), pages 230-245.
    3. Ferreira, Agmar & Kunh, Sheila S. & Cremonez, Paulo A. & Dieter, Jonathan & Teleken, Joel G. & Sampaio, Silvio C. & Kunh, Peterson D., 2018. "Brazilian poultry activity waste: Destinations and energetic potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3081-3089.
    4. Rubin, Edward S. & Chen, Chao & Rao, Anand B., 2007. "Cost and performance of fossil fuel power plants with CO2 capture and storage," Energy Policy, Elsevier, vol. 35(9), pages 4444-4454, September.
    5. Vallentin, Daniel, 2007. "Inducing the international diffusion of carbon capture and storage technologies in the power sector," Wuppertal Papers 162, Wuppertal Institute for Climate, Environment and Energy.
    6. Newell, Richard G. & Jaffe, Adam B. & Stavins, Robert N., 2006. "The effects of economic and policy incentives on carbon mitigation technologies," Energy Economics, Elsevier, vol. 28(5-6), pages 563-578, November.
    7. Hauck, Dominic & Hof, Andries F., 2017. "Abandonment of natural gas production and investment in carbon storage," Energy Policy, Elsevier, vol. 108(C), pages 322-329.
    8. K.A. Daniels & H.E. Huppert & J.A. Neufeld & D. Reiner, 2012. "The current state of CCS: Ongoing research at the University of Cambridge with application to the UK policy framework," Working Papers EPRG 1228, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    9. Abadie, Luis M. & Chamorro, José M., 2008. "European CO2 prices and carbon capture investments," Energy Economics, Elsevier, vol. 30(6), pages 2992-3015, November.
    10. Asbjørn Torvanger & Kristin Rypdal & Steffen Kallbekken, 2005. "Geological CO 2 Storage as a Climate Change Mitigation Option," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 10(4), pages 693-715, October.
    11. Siefert, Nicholas S. & Litster, Shawn, 2013. "Exergy and economic analyses of advanced IGCC–CCS and IGFC–CCS power plants," Applied Energy, Elsevier, vol. 107(C), pages 315-328.
    12. Finn Roar Aune & Gang Liu & Knut Einar Rosendahl & Eirik Lund Sagen, 2009. "Subsidising carbon capture. Effects on energy prices and market shares in the power market," Discussion Papers 595, Statistics Norway, Research Department.
    13. Gani, Asri & Naruse, Ichiro, 2007. "Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass," Renewable Energy, Elsevier, vol. 32(4), pages 649-661.
    14. Zerriffi, Hisham & Dowlatabadi, Hadi & Farrell, Alex, 2007. "Incorporating stress in electric power systems reliability models," Energy Policy, Elsevier, vol. 35(1), pages 61-75, January.
    15. Lohwasser, Richard & Madlener, Reinhard, 2012. "Economics of CCS for coal plants: Impact of investment costs and efficiency on market diffusion in Europe," Energy Economics, Elsevier, vol. 34(3), pages 850-863.
    16. Ruester, Sophia & Neumann, Anne, 2008. "The prospects for liquefied natural gas development in the US," Energy Policy, Elsevier, vol. 36(8), pages 3150-3158, August.
    17. McFarland, James R. & Herzog, Howard J., 2006. "Incorporating carbon capture and storage technologies in integrated assessment models," Energy Economics, Elsevier, vol. 28(5-6), pages 632-652, November.
    18. Nemati Mofarrah, Ali & Jalalvand, Meysam & Abdolmaleki, Abbas, 2023. "Design, multi-aspect analyses, and multi-objective optimization of a biomass/geothermal-based cogeneration of power and freshwater," Energy, Elsevier, vol. 282(C).
    19. DeCarolis, Joseph F. & Keith, David W., 2006. "The economics of large-scale wind power in a carbon constrained world," Energy Policy, Elsevier, vol. 34(4), pages 395-410, March.
    20. Bistline, John E. & Rai, Varun, 2010. "The role of carbon capture technologies in greenhouse gas emissions-reduction models: A parametric study for the U.S. power sector," Energy Policy, Elsevier, vol. 38(2), pages 1177-1191, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosendahl, Knut Einar, 2004. "Cost-effective environmental policy: implications of induced technological change," Journal of Environmental Economics and Management, Elsevier, vol. 48(3), pages 1099-1121, November.
    2. Mazzanti, Massimiliano & Montini, Anna & Zoboli, Roberto, 2006. "Municipal Waste Production, Economic Drivers, and 'New' Waste Policies: EKC Evidence from Italian Regional and Provincial Panel Data," Climate Change Modelling and Policy Working Papers 12053, Fondazione Eni Enrico Mattei (FEEM).
    3. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.
    4. Christiansen, Atle Christer, 2002. "New renewable energy developments and the climate change issue: a case study of Norwegian politics," Energy Policy, Elsevier, vol. 30(3), pages 235-243, February.
    5. Xu, Lei & Su, Jun, 2016. "From government to market and from producer to consumer: Transition of policy mix towards clean mobility in China," Energy Policy, Elsevier, vol. 96(C), pages 328-340.
    6. Mercure, Jean-François, 2018. "Fashion, fads and the popularity of choices: Micro-foundations for diffusion consumer theory," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 194-207.
    7. Jeuland, Marc & Fetter, T. Robert & Li, Yating & Pattanayak, Subhrendu K. & Usmani, Faraz & Bluffstone, Randall A. & Chávez, Carlos & Girardeau, Hannah & Hassen, Sied & Jagger, Pamela & Jaime, Mónica , 2021. "Is energy the golden thread? A systematic review of the impacts of modern and traditional energy use in low- and middle-income countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Méjean, Aurélie & Hope, Chris, 2008. "Modelling the costs of non-conventional oil: A case study of Canadian bitumen," Energy Policy, Elsevier, vol. 36(11), pages 4205-4216, November.
    9. Dendi Ramdani & Arjen Witteloostuijn & Johanna Vanderstraeten & Julie Hermans & Marcus Dejardin, 2019. "The perceived benefits of the European Union standardization. An exploration according to firm size and firm capabilities," International Economics and Economic Policy, Springer, vol. 16(2), pages 379-396, April.
    10. Vogt-Schilb, Adrien & Hallegatte, Stephane & de Gouvello Christophe, 2014. "Long-term mitigation strategies and marginal abatement cost curves : a case study on Brazil," Policy Research Working Paper Series 6808, The World Bank.
    11. Criqui, P. & Mima, S. & Menanteau, P. & Kitous, A., 2015. "Mitigation strategies and energy technology learning: An assessment with the POLES model," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 119-136.
    12. Csereklyei, Zsuzsanna & Anantharama, Nandini & Kallies, Anne, 2021. "Electricity market transitions in Australia: Evidence using model-based clustering," Energy Economics, Elsevier, vol. 103(C).
    13. Misato Sato & Karsten Neuhoff & Verena Graichen & Katja Schumacher & Felix Matthes, 2013. "Sectors under scrutiny � Evaluation of indicators to assess the risk of carbon leakage in the UK and Germany," GRI Working Papers 113, Grantham Research Institute on Climate Change and the Environment.
    14. Gregory F. Nemet, 2006. "How well does Learning-by-doing Explain Cost Reductions in a Carbon-free Energy Technology?," Working Papers 2006.143, Fondazione Eni Enrico Mattei.
    15. Inga Boie & Mario Ragwitz & Anne Held, 2016. "A composite indicator for short-term diffusion forecasts of renewable energy technologies – the case of Germany," Energy & Environment, , vol. 27(1), pages 28-54, February.
    16. World Bank Group, 2018. "Strategic Use of Climate Finance to Maximize Climate Action," World Bank Publications - Reports 30475, The World Bank Group.
    17. Kverndokk, Snorre & Rosendahl, Knut Einar & Rutherford, Thomas F., 2004. "Climate policies and induced technological change: Impacts and timing of technology subsidies," Memorandum 05/2004, Oslo University, Department of Economics.
    18. Adrien Vogt-Schilb & St�phane Hallegatte & Christophe de Gouvello, 2015. "Marginal abatement cost curves and the quality of emission reductions: a case study on Brazil," Climate Policy, Taylor & Francis Journals, vol. 15(6), pages 703-723, November.
    19. Fetter, T. Robert, 2022. "Energy transitions and technology change: “Leapfrogging” reconsidered," Resource and Energy Economics, Elsevier, vol. 70(C).
    20. van der Zwaan, Bob & Rabl, Ari, 2004. "The learning potential of photovoltaics: implications for energy policy," Energy Policy, Elsevier, vol. 32(13), pages 1545-1554, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:32:y:2004:i:3:p:367-382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.