IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v213y2018icp611-625.html
   My bibliography  Save this article

Fuzzy model of residential energy decision-making considering behavioral economic concepts

Author

Listed:
  • Spandagos, Constantine
  • Ng, Tze Ling

Abstract

To gain a fundamental understanding of the factors driving consumer energy behavior and for more effective policy-making, the development of energy consumption models taking into account key behavioral economic concepts is essential. In this direction, this paper presents a fuzzy logic decision-making model incorporating the concepts of bounded rationality, time discounting of gains, and pro-environmental behavior. The fuzzy model is used to characterize and predict consumer energy efficiency and curtailment behaviors in the context of residential cooling energy consumption. The model is developed from the perspective of the human decision-maker and the rules based on human reasoning and intuition. It takes into consideration monetary, personal comfort and environmental responsibility variables to yield predictions of one’s air-conditioning purchase and usage decisions. The results from running the model multiple times to simulate a real large urban population are found to match historical cooling energy use data reasonably well. This allows modelers some degree of confidence in the model. Moreover, perturbing key input variables produces plausible behaviors, thus providing additional validation to the model. This work demonstrates the feasibility of fuzzy logic as a powerful method for combining quantitative economic and physical factors with qualitative behavioral concepts in a single mathematical framework for better prediction of human energy behavior, and greater fundamental understanding of the “why” behind energy use that conventional building energy simulation models do not address.

Suggested Citation

  • Spandagos, Constantine & Ng, Tze Ling, 2018. "Fuzzy model of residential energy decision-making considering behavioral economic concepts," Applied Energy, Elsevier, vol. 213(C), pages 611-625.
  • Handle: RePEc:eee:appene:v:213:y:2018:i:c:p:611-625
    DOI: 10.1016/j.apenergy.2017.10.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917315544
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.10.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Papakostas, K. & Bentoulis, A. & Bakas, V. & Kyriakis, N., 2007. "Estimation of ambient temperature bin data from monthly average temperatures and solar clearness index. Validation of the methodology in two Greek cities," Renewable Energy, Elsevier, vol. 32(6), pages 991-1005.
    2. Kenneth Gillingham & Richard G. Newell & Karen Palmer, 2009. "Energy Efficiency Economics and Policy," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 597-620, September.
    3. Michael Parti & Cynthia Parti, 1980. "The Total and Appliance-Specific Conditional Demand for Electricity in the Household Sector," Bell Journal of Economics, The RAND Corporation, vol. 11(1), pages 309-321, Spring.
    4. Spandagos, Constantinos & Ng, Tze Ling, 2017. "Equivalent full-load hours for assessing climate change impact on building cooling and heating energy consumption in large Asian cities," Applied Energy, Elsevier, vol. 189(C), pages 352-368.
    5. Michalik, G. & Khan, M.E. & Bonwick, W.J. & Mielczarski, W., 1997. "Structural modelling of energy demand in the residential sector: 2. The use of linguistic variables to include uncertainty of customers' behaviour," Energy, Elsevier, vol. 22(10), pages 949-958.
    6. Gadenne, David & Sharma, Bishnu & Kerr, Don & Smith, Tim, 2011. "The influence of consumers' environmental beliefs and attitudes on energy saving behaviours," Energy Policy, Elsevier, vol. 39(12), pages 7684-7694.
    7. Gyamfi, Samuel & Krumdieck, Susan & Urmee, Tania, 2013. "Residential peak electricity demand response—Highlights of some behavioural issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 71-77.
    8. Tracey Crosbie, 2006. "Household Energy Studies: The Gap between Theory and Method," Energy & Environment, , vol. 17(5), pages 735-753, September.
    9. Kadian, Rashmi & Dahiya, R.P. & Garg, H.P., 2007. "Energy-related emissions and mitigation opportunities from the household sector in Delhi," Energy Policy, Elsevier, vol. 35(12), pages 6195-6211, December.
    10. Shahnawaz Ahmed, S. & Shah Majid, Md. & Novia, Hendri & Abd Rahman, Hasimah, 2007. "Fuzzy logic based energy saving technique for a central air conditioning system," Energy, Elsevier, vol. 32(7), pages 1222-1234.
    11. Goldblatt, David L. & Hartmann, Christoph & Durrenberger, Gregor, 2005. "Combining interviewing and modeling for end-user energy conservation," Energy Policy, Elsevier, vol. 33(2), pages 257-271, January.
    12. Zhai, Pei & Williams, Eric D., 2012. "Analyzing consumer acceptance of photovoltaics (PV) using fuzzy logic model," Renewable Energy, Elsevier, vol. 41(C), pages 350-357.
    13. Michael G. Pollitt & Irina Shaorshadze, 2013. "The role of behavioural economics in energy and climate policy," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 24, pages 523-546, Edward Elgar Publishing.
    14. Ian Ayres & Sophie Raseman & Alice Shih, 2013. "Evidence from Two Large Field Experiments that Peer Comparison Feedback Can Reduce Residential Energy Usage," Journal of Law, Economics, and Organization, Oxford University Press, vol. 29(5), pages 992-1022, October.
    15. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    16. Cho, Jaeil & Oki, Taikan & Yeh, Pat J.-F. & Kanae, Shinjiro & Kim, Wonsik, 2010. "The effect of estimated PAR uncertainties on the physiological processes of biosphere models," Ecological Modelling, Elsevier, vol. 221(12), pages 1575-1579.
    17. Cramer, James C. & Miller, Nancy & Craig, Paul & Hackett, Bruce M. & Dietz, Thomas M. & Vine, Edward L. & Levine, Mark D. & Kowalczyk, Dan J., 1985. "Social and engineering determinants and their equity implications in residential electricity use," Energy, Elsevier, vol. 10(12), pages 1283-1291.
    18. Faiers, Adam & Cook, Matt & Neame, Charles, 2007. "Towards a contemporary approach for understanding consumer behaviour in the context of domestic energy use," Energy Policy, Elsevier, vol. 35(8), pages 4381-4390, August.
    19. Shane Frederick & George Loewenstein & Ted O'Donoghue, 2002. "Time Discounting and Time Preference: A Critical Review," Journal of Economic Literature, American Economic Association, vol. 40(2), pages 351-401, June.
    20. Grandjean, A. & Adnot, J. & Binet, G., 2012. "A review and an analysis of the residential electric load curve models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6539-6565.
    21. Fumo, Nelson & Rafe Biswas, M.A., 2015. "Regression analysis for prediction of residential energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 332-343.
    22. Kilbourne, William & Pickett, Gregory, 2008. "How materialism affects environmental beliefs, concern, and environmentally responsible behavior," Journal of Business Research, Elsevier, vol. 61(9), pages 885-893, September.
    23. Douthitt, Robin A., 1989. "An economic analysis of the demand for residential space heating fuel in Canada," Energy, Elsevier, vol. 14(4), pages 187-197.
    24. Ciabattoni, Lucio & Grisostomi, Massimo & Ippoliti, Gianluca & Longhi, Sauro, 2014. "Fuzzy logic home energy consumption modeling for residential photovoltaic plant sizing in the new Italian scenario," Energy, Elsevier, vol. 74(C), pages 359-367.
    25. Lygouras, J.N. & Kodogiannis, V.S. & Pachidis, Th. & Tarchanidis, K.N. & Koukourlis, C.S., 2008. "Variable structure TITO fuzzy-logic controller implementation for a solar air-conditioning system," Applied Energy, Elsevier, vol. 85(4), pages 190-203, April.
    26. Frederiks, Elisha R. & Stenner, Karen & Hobman, Elizabeth V., 2015. "Household energy use: Applying behavioural economics to understand consumer decision-making and behaviour," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1385-1394.
    27. Yun, Geun Young & Steemers, Koen, 2011. "Behavioural, physical and socio-economic factors in household cooling energy consumption," Applied Energy, Elsevier, vol. 88(6), pages 2191-2200, June.
    28. Jones, Rory V. & Fuertes, Alba & Lomas, Kevin J., 2015. "The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 901-917.
    29. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9-10), pages 1082-1095, October.
    30. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    31. Wyatt, Peter, 2013. "A dwelling-level investigation into the physical and socio-economic drivers of domestic energy consumption in England," Energy Policy, Elsevier, vol. 60(C), pages 540-549.
    32. Elisabeth Gsottbauer & Jeroen Bergh, 2011. "Environmental Policy Theory Given Bounded Rationality and Other-regarding Preferences," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 49(2), pages 263-304, June.
    33. Zhou, Kaile & Yang, Shanlin, 2016. "Understanding household energy consumption behavior: The contribution of energy big data analytics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 810-819.
    34. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9), pages 1082-1095.
    35. Lopes, M.A.R. & Antunes, C.H. & Martins, N., 2012. "Energy behaviours as promoters of energy efficiency: A 21st century review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4095-4104.
    36. Räsänen, Teemu & Ruuskanen, Juhani & Kolehmainen, Mikko, 2008. "Reducing energy consumption by using self-organizing maps to create more personalized electricity use information," Applied Energy, Elsevier, vol. 85(9), pages 830-840, September.
    37. Steg, Linda, 2008. "Promoting household energy conservation," Energy Policy, Elsevier, vol. 36(12), pages 4449-4453, December.
    38. David Laibson, 1997. "Golden Eggs and Hyperbolic Discounting," The Quarterly Journal of Economics, Oxford University Press, vol. 112(2), pages 443-478.
    39. Basu, Kaushik, 1984. "Fuzzy revealed preference theory," Journal of Economic Theory, Elsevier, vol. 32(2), pages 212-227, April.
    40. Mamlook, Rustum & Badran, Omar & Abdulhadi, Emad, 2009. "A fuzzy inference model for short-term load forecasting," Energy Policy, Elsevier, vol. 37(4), pages 1239-1248, April.
    41. Poortinga, Wouter & Steg, Linda & Vlek, Charles & Wiersma, Gerwin, 2003. "Household preferences for energy-saving measures: A conjoint analysis," Journal of Economic Psychology, Elsevier, vol. 24(1), pages 49-64, February.
    42. Sütterlin, Bernadette & Brunner, Thomas A. & Siegrist, Michael, 2011. "Who puts the most energy into energy conservation? A segmentation of energy consumers based on energy-related behavioral characteristics," Energy Policy, Elsevier, vol. 39(12), pages 8137-8152.
    43. Persson, Johannes & Westermark, Mats, 2013. "Low-energy buildings and seasonal thermal energy storages from a behavioral economics perspective," Applied Energy, Elsevier, vol. 112(C), pages 975-980.
    44. Sanquist, Thomas F. & Orr, Heather & Shui, Bin & Bittner, Alvah C., 2012. "Lifestyle factors in U.S. residential electricity consumption," Energy Policy, Elsevier, vol. 42(C), pages 354-364.
    45. Karunakaran, R. & Iniyan, S. & Goic, Ranko, 2010. "Energy efficient fuzzy based combined variable refrigerant volume and variable air volume air conditioning system for buildings," Applied Energy, Elsevier, vol. 87(4), pages 1158-1175, April.
    46. Keshtkar, Azim & Arzanpour, Siamak, 2017. "An adaptive fuzzy logic system for residential energy management in smart grid environments," Applied Energy, Elsevier, vol. 186(P1), pages 68-81.
    47. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy-efficiency gap What does it mean?," Energy Policy, Elsevier, vol. 22(10), pages 804-810, October.
    48. Saidur, R. & Masjuki, H.H. & Jamaluddin, M.Y., 2007. "An application of energy and exergy analysis in residential sector of Malaysia," Energy Policy, Elsevier, vol. 35(2), pages 1050-1063, February.
    49. Cayla, Jean-Michel & Maizi, Nadia & Marchand, Christophe, 2011. "The role of income in energy consumption behaviour: Evidence from French households data," Energy Policy, Elsevier, vol. 39(12), pages 7874-7883.
    50. Zúñiga, K.V. & Castilla, I. & Aguilar, R.M., 2014. "Using fuzzy logic to model the behavior of residential electrical utility customers," Applied Energy, Elsevier, vol. 115(C), pages 384-393.
    51. Papakostas, K.T. & Michopoulos, A.K. & Kyriakis, N.A., 2009. "Equivalent full-load hours for estimating heating and cooling energy requirements in buildings: Greece case study," Applied Energy, Elsevier, vol. 86(5), pages 757-761, May.
    52. Zhou, Shaojie & Teng, Fei, 2013. "Estimation of urban residential electricity demand in China using household survey data," Energy Policy, Elsevier, vol. 61(C), pages 394-402.
    53. Blázquez, Leticia & Boogen, Nina & Filippini, Massimo, 2013. "Residential electricity demand in Spain: New empirical evidence using aggregate data," Energy Economics, Elsevier, vol. 36(C), pages 648-657.
    54. Bertha Maya Sopha, 2013. "Sustainable Paper Consumption: Exploring Behavioral Factors," Social Sciences, MDPI, Open Access Journal, vol. 2(4), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonghoon Ahn, 2021. "Abatement of the Increases in Cooling Energy Use during a Period of Intense Heat by a Network-Based Adaptive Controller," Sustainability, MDPI, Open Access Journal, vol. 13(3), pages 1-17, January.
    2. Jakučionytė-Skodienė, Miglė & Dagiliūtė, Renata & Liobikienė, Genovaitė, 2020. "Do general pro-environmental behaviour, attitude, and knowledge contribute to energy savings and climate change mitigation in the residential sector?," Energy, Elsevier, vol. 193(C).
    3. Qian, Xiaohu & Fang, Shu-Cherng & Huang, Min & Wang, Xingwei, 2019. "Winner determination of loss-averse buyers with incomplete information in multiattribute reverse auctions for clean energy device procurement," Energy, Elsevier, vol. 177(C), pages 276-292.
    4. Good, Nicholas, 2019. "Using behavioural economic theory in modelling of demand response," Applied Energy, Elsevier, vol. 239(C), pages 107-116.
    5. Zhang, Jiyuan & Tang, Hailong & Chen, Min, 2019. "Linear substitute model-based uncertainty analysis of complicated non-linear energy system performance (case study of an adaptive cycle engine)," Applied Energy, Elsevier, vol. 249(C), pages 87-108.
    6. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    7. Čičak Josip & Vašiček Davor, 2019. "Determining the Level of Accounting Conservatism through the Fuzzy Logic System," Business Systems Research, Sciendo, vol. 10(1), pages 88-101, April.
    8. Spandagos, Constantine & Yarime, Masaru & Baark, Erik & Ng, Tze Ling, 2020. "“Triple Target” policy framework to influence household energy behavior: Satisfy, strengthen, include," Applied Energy, Elsevier, vol. 269(C).
    9. Diego Seuret-Jimenez & Tiare Robles-Bonilla & Karla G. Cedano, 2020. "Measurement of Energy Access Using Fuzzy Logic," Energies, MDPI, Open Access Journal, vol. 13(12), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spandagos, Constantine & Yarime, Masaru & Baark, Erik & Ng, Tze Ling, 2020. "“Triple Target” policy framework to influence household energy behavior: Satisfy, strengthen, include," Applied Energy, Elsevier, vol. 269(C).
    2. Trotta, Gianluca, 2018. "Factors affecting energy-saving behaviours and energy efficiency investments in British households," Energy Policy, Elsevier, vol. 114(C), pages 529-539.
    3. Spandagos, Constantine & Baark, Erik & Ng, Tze Ling & Yarime, Masaru, 2021. "Social influence and economic intervention policies to save energy at home: Critical questions for the new decade and evidence from air-condition use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    5. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    6. Belaïd, Fateh & Garcia, Thomas, 2016. "Understanding the spectrum of residential energy-saving behaviours: French evidence using disaggregated data," Energy Economics, Elsevier, vol. 57(C), pages 204-214.
    7. Schleich, Joachim & Gassmann, Xavier & Faure, Corinne & Meissner, Thomas, 2016. "Making the implicit explicit: A look inside the implicit discount rate," Energy Policy, Elsevier, vol. 97(C), pages 321-331.
    8. Häckel, Björn & Pfosser, Stefan & Tränkler, Timm, 2017. "Explaining the energy efficiency gap - Expected Utility Theory versus Cumulative Prospect Theory," Energy Policy, Elsevier, vol. 111(C), pages 414-426.
    9. Yue, Ting & Long, Ruyin & Chen, Hong, 2013. "Factors influencing energy-saving behavior of urban households in Jiangsu Province," Energy Policy, Elsevier, vol. 62(C), pages 665-675.
    10. Jones, Rory V. & Fuertes, Alba & Lomas, Kevin J., 2015. "The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 901-917.
    11. Kowalska-Pyzalska, Anna, 2018. "What makes consumers adopt to innovative energy services in the energy market? A review of incentives and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3570-3581.
    12. Salari, Mahmoud & Javid, Roxana J., 2016. "Residential energy demand in the United States: Analysis using static and dynamic approaches," Energy Policy, Elsevier, vol. 98(C), pages 637-649.
    13. Salari, Mahmoud & Javid, Roxana J., 2017. "Modeling household energy expenditure in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 822-832.
    14. Ramachandra, T.V. & Bajpai, Vishnu & Kulkarni, Gouri & Aithal, Bharath H. & Han, Sun Sheng, 2017. "Economic disparity and CO2 emissions: The domestic energy sector in Greater Bangalore, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1331-1344.
    15. Camara, N’Famory & Xu, Deyi & Binyet, Emmanuel, 2018. "Enhancing household energy consumption: How should it be done?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 669-681.
    16. d'Adda, Giovanna & Galliera, Arianna & Tavoni, Massimo, 2020. "Urgency and engagement: Empirical evidence from a large-scale intervention on energy use awareness," Journal of Economic Psychology, Elsevier, vol. 81(C).
    17. Anna Kowalska-Pyzalska, 2015. "Social acceptance of green energy and dynamic electricity tariffs - a short review," HSC Research Reports HSC/15/07, Hugo Steinhaus Center, Wroclaw University of Technology.
    18. Shimoda, Yoshiyuki & Yamaguchi, Yohei & Iwafune, Yumiko & Hidaka, Kazuyoshi & Meier, Alan & Yagita, Yoshie & Kawamoto, Hisaki & Nishikiori, Soichi, 2020. "Energy demand science for a decarbonized society in the context of the residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    19. Fischbacher, Urs & Schudy, Simeon & Teyssier, Sabrina, 2021. "Heterogeneous preferences and investments in energy saving measures," Resource and Energy Economics, Elsevier, vol. 63(C).
    20. Howard Kunreuther & Elke U. Weber, 2014. "Aiding Decision-Making to Reduce the Impacts of Climate Change," NBER Working Papers 19776, National Bureau of Economic Research, Inc.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:213:y:2018:i:c:p:611-625. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.