IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v85y2008i4p190-203.html
   My bibliography  Save this article

Variable structure TITO fuzzy-logic controller implementation for a solar air-conditioning system

Author

Listed:
  • Lygouras, J.N.
  • Kodogiannis, V.S.
  • Pachidis, Th.
  • Tarchanidis, K.N.
  • Koukourlis, C.S.

Abstract

The design and implementation of a Two-Input/Two-Output (TITO) variable structure fuzzy-logic controller for a solar-powered air-conditioning system is described in this paper. Two DC motors are used to drive the generator pump and the feed pump of the solar air-conditioner. The first affects the temperature in the generator of the solar air-conditioner, while the second, the pressure in the power loop. The difficulty of Multi-Input/Multi-Output (MIMO) systems control is how to overcome the coupling effects among each degree of freedom. First, a traditional fuzzy-controller has been designed, its output being one of the components of the control signal for each DC motor driver. Secondly, according to the characteristics of the system's dynamics coupling, an appropriate coupling fuzzy-controller (CFC) is incorporated into a traditional fuzzy-controller (TFC) to compensate for the dynamic coupling among each degree of freedom. This control strategy simplifies the implementation problem of fuzzy control, but can also improve the control performance. This mixed fuzzy controller (MFC) can effectively improve the coupling effects of the systems, and this control strategy is easy to design and implement. Experimental results from the implemented system are presented.

Suggested Citation

  • Lygouras, J.N. & Kodogiannis, V.S. & Pachidis, Th. & Tarchanidis, K.N. & Koukourlis, C.S., 2008. "Variable structure TITO fuzzy-logic controller implementation for a solar air-conditioning system," Applied Energy, Elsevier, vol. 85(4), pages 190-203, April.
  • Handle: RePEc:eee:appene:v:85:y:2008:i:4:p:190-203
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(07)00111-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Papadopoulos, A. M. & Oxizidis, S. & Kyriakis, N., 2003. "Perspectives of solar cooling in view of the developments in the air-conditioning sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(5), pages 419-438, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Spandagos, Constantine & Ng, Tze Ling, 2018. "Fuzzy model of residential energy decision-making considering behavioral economic concepts," Applied Energy, Elsevier, vol. 213(C), pages 611-625.
    2. Bulut, Hüsamettin & Aktacir, Mehmet Azmi, 2011. "Determination of free cooling potential: A case study for Istanbul, Turkey," Applied Energy, Elsevier, vol. 88(3), pages 680-689, March.
    3. Huang, Yanjun & Khajepour, Amir & Ding, Haitao & Bagheri, Farshid & Bahrami, Majid, 2017. "An energy-saving set-point optimizer with a sliding mode controller for automotive air-conditioning/refrigeration systems," Applied Energy, Elsevier, vol. 188(C), pages 576-585.
    4. Puviyarasi, B. & Murukesh, C., 2023. "Design and implementation of Adaptive Mixed Fuzzy Controller for MIMO nonlinear systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 71-91.
    5. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    2. Axaopoulos, Ioannis & Axaopoulos, Petros & Gelegenis, John, 2014. "Optimum insulation thickness for external walls on different orientations considering the speed and direction of the wind," Applied Energy, Elsevier, vol. 117(C), pages 167-175.
    3. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.
    4. Solmus, Ismail & YamalI, Cemil & Kaftanoglu, Bilgin & Baker, Derek & Çaglar, Ahmet, 2010. "Adsorption properties of a natural zeolite-water pair for use in adsorption cooling cycles," Applied Energy, Elsevier, vol. 87(6), pages 2062-2067, June.
    5. Rosiek, S. & Batlles, F.J., 2009. "Integration of the solar thermal energy in the construction: Analysis of the solar-assisted air-conditioning system installed in CIESOL building," Renewable Energy, Elsevier, vol. 34(6), pages 1423-1431.
    6. Li, Sihui & Peng, Jinqing & Zou, Bin & Li, Bojia & Lu, Chujie & Cao, Jingyu & Luo, Yimo & Ma, Tao, 2021. "Zero energy potential of photovoltaic direct-driven air conditioners with considering the load flexibility of air conditioners," Applied Energy, Elsevier, vol. 304(C).
    7. Baniyounes, Ali M. & Rasul, M.G. & Khan, M.M.K., 2013. "Assessment of solar assisted air conditioning in Central Queensland's subtropical climate, Australia," Renewable Energy, Elsevier, vol. 50(C), pages 334-341.
    8. Wu, J.Y. & Li, S., 2009. "Study on cyclic characteristics of silica gel–water adsorption cooling system driven by variable heat source," Energy, Elsevier, vol. 34(11), pages 1955-1962.
    9. Thirugnanasambandam, Mirunalini & Iniyan, S. & Goic, Ranko, 2010. "A review of solar thermal technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 312-322, January.
    10. Maxoulis, Christos N. & Kalogirou, Soteris A., 2008. "Cyprus energy policy: The road to the 2006 world renewable energy congress trophy," Renewable Energy, Elsevier, vol. 33(3), pages 355-365.
    11. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    12. Balaras, Constantinos A. & Grossman, Gershon & Henning, Hans-Martin & Infante Ferreira, Carlos A. & Podesser, Erich & Wang, Lei & Wiemken, Edo, 2007. "Solar air conditioning in Europe--an overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 299-314, February.
    13. Sözen, Adnan & Özalp, Mehmet, 2005. "Solar-driven ejector-absorption cooling system," Applied Energy, Elsevier, vol. 80(1), pages 97-113, January.
    14. Fan, Y. & Luo, L. & Souyri, B., 2007. "Review of solar sorption refrigeration technologies: Development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1758-1775, October.
    15. Daffallah, K.O. & Benghanem, M. & Alamri, S.N. & Joraid, A.A. & Al-Mashraqi, A.A., 2017. "Experimental evaluation of photovoltaic DC refrigerator under different thermostat settings," Renewable Energy, Elsevier, vol. 113(C), pages 1150-1159.
    16. Lygouras, J.N. & Botsaris, P.N. & Vourvoulakis, J. & Kodogiannis, V., 2007. "Fuzzy logic controller implementation for a solar air-conditioning system," Applied Energy, Elsevier, vol. 84(12), pages 1305-1318, December.
    17. Chidambaram, L.A. & Ramana, A.S. & Kamaraj, G. & Velraj, R., 2011. "Review of solar cooling methods and thermal storage options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3220-3228, August.
    18. Rapanos, Vassilis T. & Polemis, Michael L., 2006. "The structure of residential energy demand in Greece," Energy Policy, Elsevier, vol. 34(17), pages 3137-3143, November.
    19. Maxoulis, Christos N. & Charalampous, Harris P. & Kalogirou, Soteris A., 2007. "Cyprus solar water heating cluster: A missed opportunity?," Energy Policy, Elsevier, vol. 35(6), pages 3302-3315, June.
    20. Martins, Matthieu & Mauran, Sylvain & Stitou, Driss & Neveu, Pierre, 2012. "A new thermal–hydraulic process for solar cooling," Energy, Elsevier, vol. 41(1), pages 104-112.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:85:y:2008:i:4:p:190-203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.