IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v117y2014icp167-175.html
   My bibliography  Save this article

Optimum insulation thickness for external walls on different orientations considering the speed and direction of the wind

Author

Listed:
  • Axaopoulos, Ioannis
  • Axaopoulos, Petros
  • Gelegenis, John

Abstract

Thermal insulation is generally installed in the envelope of residential buildings to improve their thermal performance. However, the selection of the optimum insulation thickness requires a detailed thermal energy and economic analysis. This paper determines the optimum insulation thickness for external walls of different composition and orientation, considering both the heating and cooling period and taking into account the wind speed and direction. Three types of composite, thermally insulated walls have been selected. Annual heating and cooling transmission loads are being calculated based on transient heat flow through the external walls and by using hourly climatic data of the city of Athens, Greece. The available wind speed and direction data have been statistically analyzed for the assessment of the prevalent wind directions in the area. An economic analysis, based on the life cycle savings method has been performed for each configuration, various thicknesses of insulation material and different orientations. The optimum insulation thickness for any type of wall and orientation was found to be between 7.1cm and 10.1cm. Furthermore, a sensitivity analysis indicates whether changes of the economic parameters affect the optimum insulation thickness.

Suggested Citation

  • Axaopoulos, Ioannis & Axaopoulos, Petros & Gelegenis, John, 2014. "Optimum insulation thickness for external walls on different orientations considering the speed and direction of the wind," Applied Energy, Elsevier, vol. 117(C), pages 167-175.
  • Handle: RePEc:eee:appene:v:117:y:2014:i:c:p:167-175
    DOI: 10.1016/j.apenergy.2013.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913009926
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ucar, Aynur, 2010. "Thermoeconomic analysis method for optimization of insulation thickness for the four different climatic regions of Turkey," Energy, Elsevier, vol. 35(4), pages 1854-1864.
    2. Al-Sanea, Sami A. & Zedan, M.F. & Al-Ajlan, Saleh A., 2005. "Effect of electricity tariff on the optimum insulation-thickness in building walls as determined by a dynamic heat-transfer model," Applied Energy, Elsevier, vol. 82(4), pages 313-330, December.
    3. DombaycI, Ö. Altan & Gölcü, Mustafa & Pancar, Yasar, 2006. "Optimization of insulation thickness for external walls using different energy-sources," Applied Energy, Elsevier, vol. 83(9), pages 921-928, September.
    4. Papadopoulos, A. M. & Oxizidis, S. & Kyriakis, N., 2003. "Perspectives of solar cooling in view of the developments in the air-conditioning sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(5), pages 419-438, October.
    5. Daouas, Naouel, 2011. "A study on optimum insulation thickness in walls and energy savings in Tunisian buildings based on analytical calculation of cooling and heating transmission loads," Applied Energy, Elsevier, vol. 88(1), pages 156-164, January.
    6. Sisman, Nuri & Kahya, Emin & Aras, Nil & Aras, Haydar, 2007. "Determination of optimum insulation thicknesses of the external walls and roof (ceiling) for Turkey's different degree-day regions," Energy Policy, Elsevier, vol. 35(10), pages 5151-5155, October.
    7. Ozel, Meral, 2011. "Effect of wall orientation on the optimum insulation thickness by using a dynamic method," Applied Energy, Elsevier, vol. 88(7), pages 2429-2435, July.
    8. Hasan, Afif, 1999. "Optimizing insulation thickness for buildings using life cycle cost," Applied Energy, Elsevier, vol. 63(2), pages 115-124, June.
    9. Kaynakli, O., 2008. "A study on residential heating energy requirement and optimum insulation thickness," Renewable Energy, Elsevier, vol. 33(6), pages 1164-1172.
    10. Ucar, Aynur & Balo, Figen, 2009. "Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey," Applied Energy, Elsevier, vol. 86(5), pages 730-736, May.
    11. Ucar, Aynur & Balo, Figen, 2010. "Determination of the energy savings and the optimum insulation thickness in the four different insulated exterior walls," Renewable Energy, Elsevier, vol. 35(1), pages 88-94.
    12. Yu, Jinghua & Yang, Changzhi & Tian, Liwei & Liao, Dan, 2009. "A study on optimum insulation thicknesses of external walls in hot summer and cold winter zone of China," Applied Energy, Elsevier, vol. 86(11), pages 2520-2529, November.
    13. Dascalaki, E.G. & Balaras, C.A. & Gaglia, A.G. & Droutsa, K.G. & Kontoyiannidis, S., 2012. "Energy performance of buildings—EPBD in Greece," Energy Policy, Elsevier, vol. 45(C), pages 469-477.
    14. Bektas Ekici, Betul & Aytac Gulten, Ayca & Aksoy, U. Teoman, 2012. "A study on the optimum insulation thicknesses of various types of external walls with respect to different materials, fuels and climate zones in Turkey," Applied Energy, Elsevier, vol. 92(C), pages 211-217.
    15. Mahlia, T.M.I. & Iqbal, A., 2010. "Cost benefits analysis and emission reductions of optimum thickness and air gaps for selected insulation materials for building walls in Maldives," Energy, Elsevier, vol. 35(5), pages 2242-2250.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie, Pengfei & Zhang, Fenghe & Fang, Zhou & Wang, Hongbo & Zhao, Yunfeng, 2018. "Optimizing the insulation thickness of walls and roofs of existing buildings based on primary energy consumption, global cost and pollutant emissions," Energy, Elsevier, vol. 159(C), pages 1132-1147.
    2. Méndez Echenagucia, Tomás & Capozzoli, Alfonso & Cascone, Ylenia & Sassone, Mario, 2015. "The early design stage of a building envelope: Multi-objective search through heating, cooling and lighting energy performance analysis," Applied Energy, Elsevier, vol. 154(C), pages 577-591.
    3. Pisello, Anna Laura & Asdrubali, Francesco, 2014. "Human-based energy retrofits in residential buildings: A cost-effective alternative to traditional physical strategies," Applied Energy, Elsevier, vol. 133(C), pages 224-235.
    4. Axaopoulos, Ioannis & Axaopoulos, Petros & Panayiotou, Gregoris & Kalogirou, Soteris & Gelegenis, John, 2015. "Optimal economic thickness of various insulation materials for different orientations of external walls considering the wind characteristics," Energy, Elsevier, vol. 90(P1), pages 939-952.
    5. Adekomaya, Oludaisi & Jamiru, Tamba & Sadiku, Rotimi & Huan, Zhongie, 2017. "Minimizing energy consumption in refrigerated vehicles through alternative external wall," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 89-93.
    6. Daouas, Naouel, 2016. "Impact of external longwave radiation on optimum insulation thickness in Tunisian building roofs based on a dynamic analytical model," Applied Energy, Elsevier, vol. 177(C), pages 136-148.
    7. Jie, Pengfei & Yan, Fuchun & Li, Jing & Zhang, Yumei & Wen, Zhimei, 2019. "Optimizing the insulation thickness of walls of existing buildings with CHP-based district heating systems," Energy, Elsevier, vol. 189(C).
    8. Sevindir, M. Kemal & Demir, Hakan & Ağra, Özden & Atayılmaz, Ş. Özgür & Teke, İsmail, 2017. "Modelling the optimum distribution of insulation material," Renewable Energy, Elsevier, vol. 113(C), pages 74-84.
    9. Berger, Julien & Mendes, Nathan, 2017. "An innovative method for the design of high energy performance building envelopes," Applied Energy, Elsevier, vol. 190(C), pages 266-277.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omer Kaynakli, 2011. "Parametric Investigation of Optimum Thermal Insulation Thickness for External Walls," Energies, MDPI, vol. 4(6), pages 1-15, June.
    2. Kaynakli, Omer, 2014. "Economic thermal insulation thickness for pipes and ducts: A review study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 184-194.
    3. Bektas Ekici, Betul & Aytac Gulten, Ayca & Aksoy, U. Teoman, 2012. "A study on the optimum insulation thicknesses of various types of external walls with respect to different materials, fuels and climate zones in Turkey," Applied Energy, Elsevier, vol. 92(C), pages 211-217.
    4. Aditya, L. & Mahlia, T.M.I. & Rismanchi, B. & Ng, H.M. & Hasan, M.H. & Metselaar, H.S.C. & Muraza, Oki & Aditiya, H.B., 2017. "A review on insulation materials for energy conservation in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1352-1365.
    5. Ozel, Meral, 2012. "The influence of exterior surface solar absorptivity on thermal characteristics and optimum insulation thickness," Renewable Energy, Elsevier, vol. 39(1), pages 347-355.
    6. Özkan, Derya B. & Onan, Cenk, 2011. "Optimization of insulation thickness for different glazing areas in buildings for various climatic regions in Turkey," Applied Energy, Elsevier, vol. 88(4), pages 1331-1342, April.
    7. Ozel, Meral, 2011. "Effect of wall orientation on the optimum insulation thickness by using a dynamic method," Applied Energy, Elsevier, vol. 88(7), pages 2429-2435, July.
    8. Nematchoua, Modeste Kameni & Raminosoa, Chrysostôme R.R. & Mamiharijaona, Ramaroson & René, Tchinda & Orosa, José A. & Elvis, Watis & Meukam, Pierre, 2015. "Study of the economical and optimum thermal insulation thickness for buildings in a wet and hot tropical climate: Case of Cameroon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1192-1202.
    9. Daouas, Naouel, 2016. "Impact of external longwave radiation on optimum insulation thickness in Tunisian building roofs based on a dynamic analytical model," Applied Energy, Elsevier, vol. 177(C), pages 136-148.
    10. Küçüktopcu, Erdem & Cemek, Bilal, 2018. "A study on environmental impact of insulation thickness of poultry building walls," Energy, Elsevier, vol. 150(C), pages 583-590.
    11. Daouas, Naouel, 2011. "A study on optimum insulation thickness in walls and energy savings in Tunisian buildings based on analytical calculation of cooling and heating transmission loads," Applied Energy, Elsevier, vol. 88(1), pages 156-164, January.
    12. Jihui Yuan & Craig Farnham & Kazuo Emura, 2017. "Optimum Insulation Thickness for Building Exterior Walls in 32 Regions of China to Save Energy and Reduce CO 2 Emissions," Sustainability, MDPI, vol. 9(10), pages 1-13, September.
    13. Jung Ho Kim & Young Il Kim, 2021. "Optimal Combination of External Wall Insulation Thickness and Surface Solar Reflectivity of Non-Residential Buildings in the Korean Peninsula," Sustainability, MDPI, vol. 13(6), pages 1-24, March.
    14. Ucar, Aynur & Balo, Figen, 2009. "Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey," Applied Energy, Elsevier, vol. 86(5), pages 730-736, May.
    15. Al-Sanea, Sami A. & Zedan, M.F., 2011. "Improving thermal performance of building walls by optimizing insulation layer distribution and thickness for same thermal mass," Applied Energy, Elsevier, vol. 88(9), pages 3113-3124.
    16. Mahlia, T.M.I. & Iqbal, A., 2010. "Cost benefits analysis and emission reductions of optimum thickness and air gaps for selected insulation materials for building walls in Maldives," Energy, Elsevier, vol. 35(5), pages 2242-2250.
    17. Sevindir, M. Kemal & Demir, Hakan & Ağra, Özden & Atayılmaz, Ş. Özgür & Teke, İsmail, 2017. "Modelling the optimum distribution of insulation material," Renewable Energy, Elsevier, vol. 113(C), pages 74-84.
    18. Pan, Dongmei & Chan, Mingyin & Deng, Shiming & Lin, Zhongping, 2012. "The effects of external wall insulation thickness on annual cooling and heating energy uses under different climates," Applied Energy, Elsevier, vol. 97(C), pages 313-318.
    19. Ibrahim, Mohamad & Biwole, Pascal Henry & Achard, Patrick & Wurtz, Etienne & Ansart, Guillaume, 2015. "Building envelope with a new aerogel-based insulating rendering: Experimental and numerical study, cost analysis, and thickness optimization," Applied Energy, Elsevier, vol. 159(C), pages 490-501.
    20. Yvan Dutil & Daniel Rousse, 2012. "Energy Costs of Energy Savings in Buildings: A Review," Sustainability, MDPI, vol. 4(8), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:117:y:2014:i:c:p:167-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.