IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i1p156-164.html
   My bibliography  Save this article

A study on optimum insulation thickness in walls and energy savings in Tunisian buildings based on analytical calculation of cooling and heating transmission loads

Author

Listed:
  • Daouas, Naouel

Abstract

In Tunisian climate, both heating in winter and cooling in summer are required to reach comfort levels. Due to the significant increase in building energy consumption, insulation of external walls is recently applied with a thickness typically ranging between 4Â cm and 5Â cm regardless of structure and orientation of walls and of economic parameters. In the present study, optimum insulation thickness, energy saving and payback period are calculated for a typical wall structure based on both cooling and heating loads. Yearly transmission loads are rigorously estimated using an analytical method based on Complex Finite Fourier Transform (CFFT). Considering different wall orientations, the west and east facing walls are the least favourite in the cooling season, whereas the north-facing wall is the least favourite in the heating season. A life-cycle cost analysis over a building lifetime of 30Â years shows that the south orientation is the most economical with an optimum insulation thickness of 10.1Â cm, 71.33% of energy savings and a payback period of 3.29Â years. It is noted that wall orientation has a small effect on optimum insulation thickness, but a more significant effect on energy savings which reach a maximum value of 23.78Â TND/m2 in the case of east facing wall. A sensitivity analysis shows that economic parameters, such as insulation cost, energy cost, inflation and discount rates and building lifetime, have a noticeable effect on optimum insulation and energy savings. Comparison of the present study with the degree-days model is also performed.

Suggested Citation

  • Daouas, Naouel, 2011. "A study on optimum insulation thickness in walls and energy savings in Tunisian buildings based on analytical calculation of cooling and heating transmission loads," Applied Energy, Elsevier, vol. 88(1), pages 156-164, January.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:1:p:156-164
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00299-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghrab-Morcos, Nadia, 1991. "Energy and financial considerations related to wall design for a conditioned cell in Tunisian conditions," Renewable Energy, Elsevier, vol. 1(1), pages 145-159.
    2. DombaycI, Ö. Altan & Gölcü, Mustafa & Pancar, Yasar, 2006. "Optimization of insulation thickness for external walls using different energy-sources," Applied Energy, Elsevier, vol. 83(9), pages 921-928, September.
    3. Hasan, Afif, 1999. "Optimizing insulation thickness for buildings using life cycle cost," Applied Energy, Elsevier, vol. 63(2), pages 115-124, June.
    4. Ucar, Aynur & Balo, Figen, 2010. "Determination of the energy savings and the optimum insulation thickness in the four different insulated exterior walls," Renewable Energy, Elsevier, vol. 35(1), pages 88-94.
    5. Al-Sanea, Sami A. & Zedan, M.F. & Al-Ajlan, Saleh A., 2005. "Effect of electricity tariff on the optimum insulation-thickness in building walls as determined by a dynamic heat-transfer model," Applied Energy, Elsevier, vol. 82(4), pages 313-330, December.
    6. Ucar, Aynur & Balo, Figen, 2009. "Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey," Applied Energy, Elsevier, vol. 86(5), pages 730-736, May.
    7. Yu, Jinghua & Yang, Changzhi & Tian, Liwei & Liao, Dan, 2009. "A study on optimum insulation thicknesses of external walls in hot summer and cold winter zone of China," Applied Energy, Elsevier, vol. 86(11), pages 2520-2529, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Axaopoulos, Ioannis & Axaopoulos, Petros & Gelegenis, John, 2014. "Optimum insulation thickness for external walls on different orientations considering the speed and direction of the wind," Applied Energy, Elsevier, vol. 117(C), pages 167-175.
    2. Omer Kaynakli, 2011. "Parametric Investigation of Optimum Thermal Insulation Thickness for External Walls," Energies, MDPI, vol. 4(6), pages 1-15, June.
    3. Bektas Ekici, Betul & Aytac Gulten, Ayca & Aksoy, U. Teoman, 2012. "A study on the optimum insulation thicknesses of various types of external walls with respect to different materials, fuels and climate zones in Turkey," Applied Energy, Elsevier, vol. 92(C), pages 211-217.
    4. Kaynakli, Omer, 2014. "Economic thermal insulation thickness for pipes and ducts: A review study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 184-194.
    5. Nematchoua, Modeste Kameni & Raminosoa, Chrysostôme R.R. & Mamiharijaona, Ramaroson & René, Tchinda & Orosa, José A. & Elvis, Watis & Meukam, Pierre, 2015. "Study of the economical and optimum thermal insulation thickness for buildings in a wet and hot tropical climate: Case of Cameroon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1192-1202.
    6. Özkan, Derya B. & Onan, Cenk, 2011. "Optimization of insulation thickness for different glazing areas in buildings for various climatic regions in Turkey," Applied Energy, Elsevier, vol. 88(4), pages 1331-1342, April.
    7. Aditya, L. & Mahlia, T.M.I. & Rismanchi, B. & Ng, H.M. & Hasan, M.H. & Metselaar, H.S.C. & Muraza, Oki & Aditiya, H.B., 2017. "A review on insulation materials for energy conservation in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1352-1365.
    8. Küçüktopcu, Erdem & Cemek, Bilal, 2018. "A study on environmental impact of insulation thickness of poultry building walls," Energy, Elsevier, vol. 150(C), pages 583-590.
    9. Jihui Yuan & Craig Farnham & Kazuo Emura, 2017. "Optimum Insulation Thickness for Building Exterior Walls in 32 Regions of China to Save Energy and Reduce CO 2 Emissions," Sustainability, MDPI, vol. 9(10), pages 1-13, September.
    10. Ozel, Meral, 2011. "Effect of wall orientation on the optimum insulation thickness by using a dynamic method," Applied Energy, Elsevier, vol. 88(7), pages 2429-2435, July.
    11. Ozel, Meral, 2012. "The influence of exterior surface solar absorptivity on thermal characteristics and optimum insulation thickness," Renewable Energy, Elsevier, vol. 39(1), pages 347-355.
    12. Ucar, Aynur & Balo, Figen, 2009. "Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey," Applied Energy, Elsevier, vol. 86(5), pages 730-736, May.
    13. Al-Sanea, Sami A. & Zedan, M.F., 2011. "Improving thermal performance of building walls by optimizing insulation layer distribution and thickness for same thermal mass," Applied Energy, Elsevier, vol. 88(9), pages 3113-3124.
    14. Daouas, Naouel, 2016. "Impact of external longwave radiation on optimum insulation thickness in Tunisian building roofs based on a dynamic analytical model," Applied Energy, Elsevier, vol. 177(C), pages 136-148.
    15. Zhang, L.Y. & Jin, L.W. & Wang, Z.N. & Zhang, J.Y. & Liu, X. & Zhang, L.H., 2017. "Effects of wall configuration on building energy performance subject to different climatic zones of China," Applied Energy, Elsevier, vol. 185(P2), pages 1565-1573.
    16. Mahlia, T.M.I. & Iqbal, A., 2010. "Cost benefits analysis and emission reductions of optimum thickness and air gaps for selected insulation materials for building walls in Maldives," Energy, Elsevier, vol. 35(5), pages 2242-2250.
    17. Jung Ho Kim & Young Il Kim, 2021. "Optimal Combination of External Wall Insulation Thickness and Surface Solar Reflectivity of Non-Residential Buildings in the Korean Peninsula," Sustainability, MDPI, vol. 13(6), pages 1-24, March.
    18. Bahadori, Alireza & Vuthaluru, Hari B., 2010. "A simple method for the estimation of thermal insulation thickness," Applied Energy, Elsevier, vol. 87(2), pages 613-619, February.
    19. Yu, Jinghua & Yang, Changzhi & Tian, Liwei & Liao, Dan, 2009. "A study on optimum insulation thicknesses of external walls in hot summer and cold winter zone of China," Applied Energy, Elsevier, vol. 86(11), pages 2520-2529, November.
    20. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:1:p:156-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.