IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v177y2020ics0308521x18311119.html
   My bibliography  Save this article

Effects of agricultural mechanization on economies of scope in crop production in Nigeria

Author

Listed:
  • Takeshima, Hiroyuki
  • Hatzenbuehler, Patrick L.
  • Edeh, Hyacinth O.

Abstract

Agricultural mechanization has often been associated with scale-effects and increased specialization. Such characterizations, however, fail to explain how mechanization may grow in Africa where production environments are heterogeneous even within a farm household, and crop diversification may help in mitigating risks. Using panel data from farm households and crop-specific production costs in Nigeria, we estimate how the adoptions of animal traction or tractors affect the economies of scope (EOS) for rice, non-rice grains, and legumes/seeds, which are the crop groups that are most widely grown with animal traction or tractors in Nigeria, with respect to other non-rice crops. The inverse-probability-weighting method is used to address the potential endogeneity of mechanization adoption and is combined with primal- and dual-models of EOS estimation. The results show that the adoption of these mechanization technologies is associated with greater EOS between rice and non-rice crops but lower EOS among non-rice crops (i.e., between non-rice grains, legumes/seeds, and other non-rice crops). Mechanical technologies may raise EOS between crops that are grown in more heterogeneous environments, even though it may lower EOS between crops that are grown under relatively similar agroecological conditions. To the best of our knowledge, this is the first paper that shows the effects of mechanical technologies on EOS in agriculture in developing countries.

Suggested Citation

  • Takeshima, Hiroyuki & Hatzenbuehler, Patrick L. & Edeh, Hyacinth O., 2020. "Effects of agricultural mechanization on economies of scope in crop production in Nigeria," Agricultural Systems, Elsevier, vol. 177(C).
  • Handle: RePEc:eee:agisys:v:177:y:2020:i:c:s0308521x18311119
    DOI: 10.1016/j.agsy.2019.102691
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X18311119
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sheng, Yu & Zhao, Shiji & Nossal, Katarina & Zhang, Dandan, 2015. "Productivity and farm size in Australian agriculture: reinvestigating the returns to scale," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(1), January.
    2. Jansen, Hans G. P., 1993. "Ex-ante profitability of animal traction investments in semi-arid Sub-Saharan Africa: Evidence from Niger and Nigeria," Agricultural Systems, Elsevier, vol. 43(3), pages 323-349.
    3. Francisco Rosas & Sergio H Lence, 2019. "How Reliable is Duality Theory in Empirical Work?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(3), pages 825-848.
    4. Songqing Jin & Scott Rozelle & Julian Alston & Jikun Huang, 2005. "Economies Of Scale And Scope And The Economic Efficiency Of China'S Agricultural Research System," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 46(3), pages 1033-1057, August.
    5. Tambo, Justice A. & Mockshell, Jonathan, 2018. "Differential Impacts of Conservation Agriculture Technology Options on Household Income in Sub-Saharan Africa," Ecological Economics, Elsevier, vol. 151(C), pages 95-105.
    6. Hiroyuki Takeshima & Futoshi Yamauchi, 2012. "Risks and farmers’ investment in productive assets in Nigeria," Agricultural Economics, International Association of Agricultural Economists, vol. 43(2), pages 143-153, March.
    7. Hiroyuki Takeshima & Alejandro Nin—Pratt & Xinshen Diao, 2013. "Mechanization and Agricultural Technology Evolution, Agricultural Intensification in Sub-Saharan Africa: Typology of Agricultural Mechanization in Nigeria," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(5), pages 1230-1236.
    8. Rosenzweig, Mark R & Wolpin, Kenneth I, 1993. "Credit Market Constraints, Consumption Smoothing, and the Accumulation of Durable Production Assets in Low-Income Countries: Investment in Bullocks in India," Journal of Political Economy, University of Chicago Press, vol. 101(2), pages 223-244, April.
    9. Hiroyuki Takeshima & Hyacinth O. Edeh & Akeem O. Lawal & Moshudi A. Isiaka, 2015. "Characteristics of Private-Sector Tractor Service Provisions: Insights from Nigeria," The Developing Economies, Institute of Developing Economies, vol. 53(3), pages 188-217, September.
    10. Swetlana Renner & Thomas Glauben & Heinrich Hockmann, 2014. "Measurement and decomposition of flexibility of multi-output firms," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 41(5), pages 745-773.
    11. Baumol, William J, 1982. "Contestable Markets: An Uprising in the Theory of Industry Structure," American Economic Review, American Economic Association, vol. 72(1), pages 1-15, March.
    12. Takeshima, Hiroyuki & Nasir, Abdullahi Mohammed, 2017. "The role of the locations of public sector varietal development activities on agricultural productivity: Evidence from northern Nigeria:," NSSP working papers 42, International Food Policy Research Institute (IFPRI).
    13. Douglas Gollin & Remi Jedwab & Dietrich Vollrath, 2016. "Urbanization with and without industrialization," Journal of Economic Growth, Springer, vol. 21(1), pages 35-70, March.
    14. Martin Huber, 2014. "Treatment Evaluation in the Presence of Sample Selection," Econometric Reviews, Taylor & Francis Journals, vol. 33(8), pages 869-905, November.
    15. Takeshima, Hiroyuki & Hatzenbuehler, Patrick L. & Edeh, Hyacinth, 2018. "Synopsis: Effects of agricultural mechanization on economies of scope in crop production in Nigeria," NSSP policy notes 48, International Food Policy Research Institute (IFPRI).
    16. Hiroyuki Takeshima & Alex Winter-Nelson, 2012. "Sales location among semi-subsistence cassava farmers in Benin: a heteroskedastic double selection model," Agricultural Economics, International Association of Agricultural Economists, vol. 43(6), pages 655-670, November.
    17. Takeshima, Hiroyuki & Nasir, Abdullahi Mohammed, 2017. "Synopsis: The role of the locations of public sector varietal development activities on agricultural productivity," Feed the Future Innovation Lab for Food Security Policy Research Briefs 264400, Michigan State University, Department of Agricultural, Food, and Resource Economics, Feed the Future Innovation Lab for Food Security (FSP).
    18. Okoruwa, Victor & Jabbar, M. A. & Akinwumi, J. A., 1996. "Crop-livestock competition in the West African derived savanna: Application of a multi-objective programming model," Agricultural Systems, Elsevier, vol. 52(4), pages 439-453, December.
    19. Xavier Irz & Colin Thirtle, 2004. "Dual Technological Development in Botswana Agriculture: A Stochastic Input Distance Function Approach," Journal of Agricultural Economics, Wiley Blackwell, vol. 55(3), pages 455-478, November.
    20. Paut, Raphaël & Sabatier, Rodolphe & Tchamitchian, Marc, 2019. "Reducing risk through crop diversification: An application of portfolio theory to diversified horticultural systems," Agricultural Systems, Elsevier, vol. 168(C), pages 123-130.
    21. Takeshima, Hiroyuki & Hatzenbuehler, Patrick L. & Edeh, Hyacinth O., 2020. "Effects of agricultural mechanization on economies of scope in crop production in Nigeria," Agricultural Systems, Elsevier, vol. 177(C).
    22. Matias Busso & John DiNardo & Justin McCrary, 2014. "New Evidence on the Finite Sample Properties of Propensity Score Reweighting and Matching Estimators," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 885-897, December.
    23. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    24. Takeshima, Hiroyuki & Houssou, Nazaire & Diao, Xinshen, 2018. "Effects of tractor ownership on returns-to-scale in agriculture: Evidence from maize in Ghana," Food Policy, Elsevier, vol. 77(C), pages 33-49.
    25. Bhadra, Dipasis & Chin, David & Dziepak, Anthony & Harback, Kate, 2008. "Analysis of Cost at FAA’s En Route Centers: An Empirical Perspective," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 47(4), pages 1-27.
    26. Chavas, Jean-Paul, 1993. "The Ricardian Rent and the Allocation of Land under Uncertainty," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 20(4), pages 451-469.
    27. Wooldridge, Jeffrey M., 2007. "Inverse probability weighted estimation for general missing data problems," Journal of Econometrics, Elsevier, vol. 141(2), pages 1281-1301, December.
    28. Amsler, Christine & Prokhorov, Artem & Schmidt, Peter, 2016. "Endogeneity in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 190(2), pages 280-288.
    29. Eric W. Christensen, 2004. "Scale and scope economies in nursing homes: A quantile regression approach," Health Economics, John Wiley & Sons, Ltd., vol. 13(4), pages 363-377, April.
    30. Coelli, Tim & Fleming, Euan, 2004. "Diversification economies and specialisation efficiencies in a mixed food and coffee smallholder farming system in Papua New Guinea," Agricultural Economics, Blackwell, vol. 31(2-3), pages 229-239, December.
    31. Lawrence, P. R. & Pearson, R. A., 2002. "Use of draught animal power on small mixed farms in Asia," Agricultural Systems, Elsevier, vol. 71(1-2), pages 99-110.
    32. Di Falco, Salvatore & Bezabih, Mintewab & Yesuf, Mahmud, 2010. "Seeds for livelihood: Crop biodiversity and food production in Ethiopia," Ecological Economics, Elsevier, vol. 69(8), pages 1695-1702, June.
    33. Jean-Paul Chavas, 2008. "On the economics of agricultural production ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 52(4), pages 365-380, December.
    34. Feder, Gershon & Just, Richard E & Zilberman, David, 1985. "Adoption of Agricultural Innovations in Developing Countries: A Survey," Economic Development and Cultural Change, University of Chicago Press, vol. 33(2), pages 255-298, January.
    35. Marcella Alsan, 2015. "The Effect of the TseTse Fly on African Development," American Economic Review, American Economic Association, vol. 105(1), pages 382-410, January.
    36. Arega Alene & V. Manyong, 2007. "The effects of education on agricultural productivity under traditional and improved technology in northern Nigeria: an endogenous switching regression analysis," Empirical Economics, Springer, vol. 32(1), pages 141-159, April.
    37. Takeshima, Hiroyuki, 2017. "The roles of agroclimatic similarity and returns on scale in the demand for mechanization: Insights from northern Nigeria," IFPRI discussion papers 1692, International Food Policy Research Institute (IFPRI).
    38. Cunguara, Benedito & Darnhofer, Ika, 2011. "Assessing the impact of improved agricultural technologies on household income in rural Mozambique," Food Policy, Elsevier, vol. 36(3), pages 378-390, June.
    39. Yu Sheng & Shiji Zhao & Katarina Nossal & Dandan Zhang, 2015. "Productivity and farm size in Australian agriculture: reinvestigating the returns to scale," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(1), pages 16-38, January.
    40. Sheahan, Megan & Barrett, Christopher B., 2017. "Ten striking facts about agricultural input use in Sub-Saharan Africa," Food Policy, Elsevier, vol. 67(C), pages 12-25.
    41. Benin, S. & Smale, M. & Pender, J. & Gebremedhin, B. & Ehui, S., 2004. "The economic determinants of cereal crop diversity on farms in the Ethiopian highlands," Agricultural Economics, Blackwell, vol. 31(2-3), pages 197-208, December.
    42. Rahman, Sanzidur, 2009. "Whether crop diversification is a desired strategy for agricultural growth in Bangladesh?," Food Policy, Elsevier, vol. 34(4), pages 340-349, August.
    43. Nguyen, Huy Quynh, 2017. "Analyzing the economies of crop diversification in rural Vietnam using an input distance function," Agricultural Systems, Elsevier, vol. 153(C), pages 148-156.
    44. Hiroyuki Takeshima, 2017. "Custom-hired tractor services and returns to scale in smallholder agriculture: a production function approach," Agricultural Economics, International Association of Agricultural Economists, vol. 48(3), pages 363-372, May.
    45. Olson, Jerome A. & Schmidt, Peter & Waldman, Donald M., 1980. "A Monte Carlo study of estimators of stochastic frontier production functions," Journal of Econometrics, Elsevier, vol. 13(1), pages 67-82, May.
    46. Xiaobing Wang & Futoshi Yamauchi & Jikun Huang, 2016. "Rising wages, mechanization, and the substitution between capital and labor: evidence from small scale farm system in China," Agricultural Economics, International Association of Agricultural Economists, vol. 47(3), pages 309-317, May.
    47. Dale Squires, 1987. "Long-Run Profit Functions for Multiproduct Firms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 69(3), pages 558-569.
    48. Gyimah-Brempong, Kwabena & Johnson, Michael E. & Takeshima, Hiroyuki, 2016. "The Nigerian rice economy: Policy options for transforming production, marketing, and trade: Synopsis," IFPRI synopses 9780896299726, International Food Policy Research Institute (IFPRI).
    49. Tambo, J. & Mockshell, J., 2018. "Differential impacts of conservation agriculture technology options on household welfare in sub-Saharan Africa," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277035, International Association of Agricultural Economists.
    50. Samuel Benin, 2015. "Impact of Ghana's agricultural mechanization services center program," Agricultural Economics, International Association of Agricultural Economists, vol. 46(S1), pages 103-117, November.
    51. Binswanger, Hans P., 1986. "Evaluating research system performance and targeting research in land-abundant areas of Sub-Saharan Africa," World Development, Elsevier, vol. 14(4), pages 469-475, April.
    52. Takeshima, Hiroyuki & Nasir, Abdullahi Mohammed, 2017. "Synopsis: The role of the locations of public sector varietal development activities on agricultural productivity:," NSSP policy notes 39, International Food Policy Research Institute (IFPRI).
    53. Takeshima, Hiroyuki & Nagarajan, Latha, 2012. "Minor millets in Tamil Nadu, India: local market participation, on-farm diversity and farmer welfare," Environment and Development Economics, Cambridge University Press, vol. 17(5), pages 603-632, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Wais Azimy & Ghulam Dastgir Khan & Yuichiro Yoshida & Keisuke Kawata, 2020. "Measuring the Impacts of Saffron Production Promotion Measures on Farmers’ Policy Acceptance Probability: A Randomized Conjoint Field Experiment in Herat Province, Afghanistan," Sustainability, MDPI, Open Access Journal, vol. 12(10), pages 1-15, May.
    2. Xiaoshi Zhou & Wanglin Ma & Gucheng Li & Huanguang Qiu, 2020. "Farm machinery use and maize yields in China: an analysis accounting for selection bias and heterogeneity," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(4), pages 1282-1307, October.
    3. Takeshima, Hiroyuki & Hatzenbuehler, Patrick L. & Edeh, Hyacinth O., 2020. "Effects of agricultural mechanization on economies of scope in crop production in Nigeria," Agricultural Systems, Elsevier, vol. 177(C).
    4. Takeshima, Hiroyuki & Liu, Yanyan, 2020. "Smallholder mechanization induced by yield-enhancing biological technologies: Evidence from Nepal and Ghana," Agricultural Systems, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tesfaye, Wondimagegn & Tirivayi, Nyasha, 2020. "Crop diversity, household welfare and consumption smoothing under risk: Evidence from rural Uganda," World Development, Elsevier, vol. 125(C).
    2. Takeshima, Hiroyuki, 2015. "Identifying the effects of market imperfections for a scale biased agricultural technology: Tractors in Nigeria," 2015 Conference, August 9-14, 2015, Milan, Italy 211937, International Association of Agricultural Economists.
    3. Takeshima, Hiroyuki & Houssou, Nazaire & Diao, Xinshen, 2018. "Effects of tractor ownership on returns-to-scale in agriculture: Evidence from maize in Ghana," Food Policy, Elsevier, vol. 77(C), pages 33-49.
    4. Bhattarai, Madhusudan & Joshi, Pramod Kumar & Shekhawa, R. S. & Takeshima, Hiroyuki, 2017. "The evolution of tractorization in India’s low-wage economy: Key patterns and implications," IFPRI discussion papers 1675, International Food Policy Research Institute (IFPRI).
    5. Yukichi Mano & Kazushi Takahashi & Keijiro Otsuka, 2020. "Mechanization in land preparation and agricultural intensification: The case of rice farming in the Cote d'Ivoire," Agricultural Economics, International Association of Agricultural Economists, vol. 51(6), pages 899-908, November.
    6. Diao, Xinshen & Silver, Jed & Takeshima, Hiroyuki, 2016. "Agricultural mechanization and agricultural transformation:," IFPRI discussion papers 1527, International Food Policy Research Institute (IFPRI).
    7. Coromaldi, Manuela & Pallante, Giacomo & Savastano, Sara, 2015. "Adoption of modern varieties, farmers' welfare and crop biodiversity: Evidence from Uganda," Ecological Economics, Elsevier, vol. 119(C), pages 346-358.
    8. Takeshima, Hiroyuki, 2015. "Market imperfections for tractor service provision in Nigeria: International perspectives and empirical evidence:," IFPRI discussion papers 1424, International Food Policy Research Institute (IFPRI).
    9. Takeshima, Hiroyuki, 2017. "The roles of agroclimatic similarity and returns on scale in the demand for mechanization: Insights from northern Nigeria," IFPRI discussion papers 1692, International Food Policy Research Institute (IFPRI).
    10. Hiroyuki Takeshima, 2019. "Geography of plant breeding systems, agroclimatic similarity, and agricultural productivity: evidence from Nigeria," Agricultural Economics, International Association of Agricultural Economists, vol. 50(1), pages 67-78, January.
    11. Hiroyuki Takeshima & Rajendra Prasad Adhikari & Anjani Kumar, 2016. "Is Access to Tractor Service a Binding Constraint for Nepali Terai Farmers?," Working Papers id:9604, eSocialSciences.
    12. Micheels, Eric T. & Nolan, James F., 2016. "Examining the effects of absorptive capacity and social capital on the adoption of agricultural innovations: A Canadian Prairie case study," Agricultural Systems, Elsevier, vol. 145(C), pages 127-138.
    13. Josephson, Anna Leigh & Michler, Jeffrey D., 2015. "To Specialize or Diversify: Agricultural Diversity and Poverty Persistence in Ethiopia," 2015 Conference, August 9-14, 2015, Milan, Italy 212459, International Association of Agricultural Economists.
    14. Takeshima, Hiroyuki, 2017. "Overview of the evolution of agricultural mechanization in Nepal: A focus on tractors and combine harvesters," IFPRI discussion papers 1662, International Food Policy Research Institute (IFPRI).
    15. Sanzidur Rahman & Basanta Kumar Barmon, 2018. "Total Factor Energy Productivity and Efficiency Changes of the Gher (Prawn-Carp-Rice) Farming System in Bangladesh: A Stochastic Input Distance Function Approach," Energies, MDPI, Open Access Journal, vol. 11(12), pages 1-17, December.
    16. Nguyen, Huy, 2014. "Crop diversification, economic performance and household’s behaviours Evidence from Vietnam," MPRA Paper 59090, University Library of Munich, Germany.
    17. Hayatullah Ahmadzai, 2017. "Status, patterns, and microeconomic drivers of the extent of diversity in crop production: Evidence from Afghanistan," Discussion Papers 2017-07, University of Nottingham, CREDIT.
    18. Teklewold, Hailemariam & Gebrehiwot, Tagel & Bezabih, Mintewab, 2019. "Climate smart agricultural practices and gender differentiated nutrition outcome: An empirical evidence from Ethiopia," World Development, Elsevier, vol. 122(C), pages 38-53.
    19. Henry Kankwamba & Mariam Kadzamira & Karl Pauw, 2018. "How diversified is cropping in Malawi? Patterns, determinants and policy implications," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(2), pages 323-338, April.
    20. Takeshima, Hiroyuki & Agandin, John & Kolavalli, Shashidhara, 2017. "Growth of modern service providers for the African agricultural sector: An insight from a public irrigation scheme in Ghana," IFPRI discussion papers 1678, International Food Policy Research Institute (IFPRI).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:177:y:2020:i:c:s0308521x18311119. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/locate/agsy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.