IDEAS home Printed from https://ideas.repec.org/a/aea/jecper/v31y2017i2p187-210.html
   My bibliography  Save this article

How Government Statistics Adjust for Potential Biases from Quality Change and New Goods in an Age of Digital Technologies: A View from the Trenches

Author

Listed:
  • Erica L. Groshen
  • Brian C. Moyer
  • Ana M. Aizcorbe
  • Ralph Bradley
  • David M. Friedman

Abstract

A key economic indicator is real output. To get this right, we need to measure accurately both the value of nominal GDP (done by Bureau of Economic Analaysis) and key price indexes (done mostly by Bureau of Labor Statisticcs). All of us have worked on these measurements while at the BLS and the BEA. In this article, we explore some of the thorny statistical and conceptual issues related to measuring a dynamic economy. An often-stated concern is that the national economic accounts miss some of the value of some goods and services arising from the growing digital economy. We agree that measurement problems related to quality changes and new goods have likely caused growth of real output and productivity to be understated. Nevertheless, these measurement issues are far from new, and, based on the magnitude and timing of recent changes, we conclude that it is unlikely that they can account for the pattern of slower growth in recent years. First we discuss how the Bureau of Labor Statistics currently adjusts price indexes to reduce the bias from quality changes and the introduction of new goods, along with some alternative methods that have been proposed. We then present estimates of the extent of remaining bias in real GDP growth that stem from potential biases in growth of consumption and investment. And we take a look at potential biases that could result from challenges in measuring nominal GDP, including those involving the digital economy. Finally, we review ongoing work at BLS and BEA to reduce potential biases and further improve measurement.

Suggested Citation

  • Erica L. Groshen & Brian C. Moyer & Ana M. Aizcorbe & Ralph Bradley & David M. Friedman, 2017. "How Government Statistics Adjust for Potential Biases from Quality Change and New Goods in an Age of Digital Technologies: A View from the Trenches," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 187-210, Spring.
  • Handle: RePEc:aea:jecper:v:31:y:2017:i:2:p:187-210
    Note: DOI: 10.1257/jep.31.2.187
    as

    Download full text from publisher

    File URL: https://www.aeaweb.org/articles?id=10.1257/jep.31.2.187
    Download Restriction: no

    File URL: https://www.aeaweb.org/articles/attachments?retrieve=RpDwRqHfeeew-GLlkmPn3JgNwEt9GdZr
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David M. Byrne & John G. Fernald & Marshall B. Reinsdorf, 2016. "Does the United States Have a Productivity Slowdown or a Measurement Problem?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 47(1 (Spring), pages 109-182.
    2. Bradley, Ralph, 2013. "Feasible methods to estimate disease based price indexes," Journal of Health Economics, Elsevier, vol. 32(3), pages 504-514.
    3. Silver, Mick & Heravi, Saeed, 2007. "The Difference Between Hedonic Imputation Indexes and Time Dummy Hedonic Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 239-246, April.
    4. Redding, Stephen J. & Weinstein, David E., 2016. "A unified approach to estimating demand and welfare," LSE Research Online Documents on Economics 67681, London School of Economics and Political Science, LSE Library.
    5. Ivancic, Lorraine & Erwin Diewert, W. & Fox, Kevin J., 2011. "Scanner data, time aggregation and the construction of price indexes," Journal of Econometrics, Elsevier, vol. 161(1), pages 24-35, March.
    6. Jan de Haan & Frances Krsinich, 2014. "Scanner Data and the Treatment of Quality Change in Nonrevisable Price Indexes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 341-358, July.
    7. Chad Syverson, 2017. "Challenges to Mismeasurement Explanations for the US Productivity Slowdown," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 165-186, Spring.
    8. Alberto Cavallo & Roberto Rigobon, 2016. "The Billion Prices Project: Using Online Prices for Measurement and Research," Journal of Economic Perspectives, American Economic Association, vol. 30(2), pages 151-178, Spring.
    9. Susan Houseman & Christopher Kurz & Paul Lengermann & Benjamin Mandel, 2011. "Offshoring Bias in U.S. Manufacturing," Journal of Economic Perspectives, American Economic Association, vol. 25(2), pages 111-132, Spring.
    10. Amil Petrin, 2002. "Quantifying the Benefits of New Products: The Case of the Minivan," Journal of Political Economy, University of Chicago Press, vol. 110(4), pages 705-729, August.
    11. David M. Cutler & Mark McClellan & Joseph P. Newhouse & Dahlia Remler, 1998. "Are Medical Prices Declining? Evidence from Heart Attack Treatments," The Quarterly Journal of Economics, Oxford University Press, vol. 113(4), pages 991-1024.
    12. Nevo, Aviv, 2001. "Measuring Market Power in the Ready-to-Eat Cereal Industry," Econometrica, Econometric Society, vol. 69(2), pages 307-342, March.
    13. Dale W. Jorgenson, 2009. "A New Architecture For The U.S. National Accounts," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 55(1), pages 1-42, March.
    14. David M. Byrne & Stephen D. Oliner & Daniel E. Sichel, 2018. "How Fast are Semiconductor Prices Falling?," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 64(3), pages 679-702, September.
    15. Greenstein, Shane & McDevitt, Ryan, 2011. "Evidence of a modest price decline in US broadband services," Information Economics and Policy, Elsevier, vol. 23(2), pages 200-211, June.
    16. repec:aei:rpaper:650501 is not listed on IDEAS
    17. Aviv Nevo, 2003. "New Products, Quality Changes, and Welfare Measures Computed from Estimated Demand Systems," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 266-275, May.
    18. Aizcorbe, Ana M., 2014. "A Practical Guide to Price Index and Hedonic Techniques," OUP Catalogue, Oxford University Press, number 9780198702429, November.
    19. Tim Erickson & Ariel Pakes, 2011. "An Experimental Component Index for the CPI: From Annual Computer Data to Monthly Data on Other Goods," American Economic Review, American Economic Association, vol. 101(5), pages 1707-1738, August.
    20. Ariel Pakes, 2003. "A Reconsideration of Hedonic Price Indexes with an Application to PC's," American Economic Review, American Economic Association, vol. 93(5), pages 1578-1596, December.
    21. Aizcorbe, Ana & Nestoriak, Nicole, 2011. "Changing mix of medical care services: Stylized facts and implications for price indexes," Journal of Health Economics, Elsevier, vol. 30(3), pages 568-574, May.
    22. Boskin, Michael J, et al, 1997. "The CPI Commission: Findings and Recommendations," American Economic Review, American Economic Association, vol. 87(2), pages 78-83, May.
    23. Christian Broda & David E. Weinstein, 2010. "Product Creation and Destruction: Evidence and Price Implications," American Economic Review, American Economic Association, vol. 100(3), pages 691-723, June.
    24. de Haan, Jan & van der Grient, Heymerik A., 2011. "Eliminating chain drift in price indexes based on scanner data," Journal of Econometrics, Elsevier, vol. 161(1), pages 36-46, March.
    25. Rosen, Sherwin, 1974. "Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition," Journal of Political Economy, University of Chicago Press, vol. 82(1), pages 34-55, Jan.-Feb..
    26. David E. Lebow & Jeremy B. Rudd, 2003. "Measurement Error in the Consumer Price Index: Where Do We Stand?," Journal of Economic Literature, American Economic Association, vol. 41(1), pages 159-201, March.
    27. Murray Foss & Marylin Manser & Allan Young, 1993. "Price Measurements and Their Uses," NBER Books, National Bureau of Economic Research, Inc, number foss93-1, January.
    28. Krsinich Frances, 2016. "The FEWS Index: Fixed Effects with a Window Splice," Journal of Official Statistics, Sciendo, vol. 32(2), pages 375-404, June.
    29. Stephen J Redding & David E Weinstein, 2020. "Measuring Aggregate Price Indices with Taste Shocks: Theory and Evidence for CES Preferences," The Quarterly Journal of Economics, Oxford University Press, vol. 135(1), pages 503-560.
    30. Steven T. Berry, 1994. "Estimating Discrete-Choice Models of Product Differentiation," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 242-262, Summer.
    31. Kelvin J. Lancaster, 1966. "A New Approach to Consumer Theory," Journal of Political Economy, University of Chicago Press, vol. 74, pages 132-132.
    32. Jerry Hausman, 2003. "Sources of Bias and Solutions to Bias in the Consumer Price Index," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 23-44, Winter.
    33. J. Steven Landefeld & Eugene P. Seskin & Barbara M. Fraumeni, 2008. "Taking the Pulse of the Economy: Measuring GDP," Journal of Economic Perspectives, American Economic Association, vol. 22(2), pages 193-216, Spring.
    34. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Feldstein, 2017. "Underestimating the Real Growth of GDP, Personal Income, and Productivity," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 145-164, Spring.
    2. Gian Maria Tomat, 2005. "Prices, Product Differentiation And Quality Measurement: A Comparison Between Hedonic And Matched Model Methods," Temi di discussione (Economic working papers) 547, Bank of Italy, Economic Research and International Relations Area.
    3. Badruddoza, Syed & Amin, Modhurima & McCluskey, Jill, 2019. "Assessing the Importance of an Attribute in a Demand SystemStructural Model versus Machine Learning," Working Papers 2019-5, School of Economic Sciences, Washington State University.
    4. Abe Dunn & Anne Hall & Seidu Dauda, 2022. "Are Medical Care Prices Still Declining? A Re‐Examination Based on Cost‐Effectiveness Studies," Econometrica, Econometric Society, vol. 90(2), pages 859-886, March.
    5. Philippe Aghion & Antonin Bergeaud & Timo Boppart & Peter J. Klenow & Huiyu Li, 2019. "Missing Growth from Creative Destruction," American Economic Review, American Economic Association, vol. 109(8), pages 2795-2822, August.
    6. Charles R. Hulten & Leonard I. Nakamura, 2017. "Accounting for Growth in the Age of the Internet The Importance of Output-Saving Technical Change," Working Papers 17-24, Federal Reserve Bank of Philadelphia.
    7. Diewert, Erwin, 2019. "Quality Adjustment and Hedonics: A Unified Approach," Microeconomics.ca working papers erwin_diewert-2019-2, Vancouver School of Economics, revised 14 Mar 2019.
    8. Martin O'Connell & Pierre Dubois & Rachel Griffith, 2022. "The Use of Scanner Data for Economics Research," Annual Review of Economics, Annual Reviews, vol. 14(1), pages 723-745, August.
    9. Goldin, Ian & Koutroumpis, Pantelis & Lafond, François & Winkler, Julian, 2020. "Why is productivity slowing down?," MPRA Paper 99172, University Library of Munich, Germany.
    10. Daniel Melser & Iqbal A. Syed, 2016. "Life Cycle Price Trends and Product Replacement: Implications for the Measurement of Inflation," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 62(3), pages 509-533, September.
    11. Lucarelli, Claudio & Nicholson, Sean & Tilipman, Nicholas, 2022. "Price Indices and the Value of Innovation with Heterogenous Patients," Journal of Health Economics, Elsevier, vol. 84(C).
    12. Iqbal A. Syed & Jan De Haan, 2017. "Age, Time, Vintage, And Price Indexes: Measuring The Depreciation Pattern Of Houses," Economic Inquiry, Western Economic Association International, vol. 55(1), pages 580-600, January.
    13. Claudio Lucarelli & Sean Nicholson, 2009. "A Quality-Adjusted Price Index for Colorectal Cancer Drugs," NBER Working Papers 15174, National Bureau of Economic Research, Inc.
    14. Bajari, Patrick & Benkard, C. Lanier, 2004. "Demand Estimation With Heterogeneous Consumers and Unobserved Product Characteristics: A Hedonic Approach," Research Papers 1842, Stanford University, Graduate School of Business.
    15. C. Lanier Benkard & Patrick Bajari, 2004. "Demand Estimation with Heterogeneous Consumers and Unobserved Product Characteristics: A Hedonic Approach," NBER Working Papers 10278, National Bureau of Economic Research, Inc.
    16. Tomat, Gian Maria, 2006. "Prices, product differentiation and quality measurement: A comparison between hedonic and matched model methods," Research in Economics, Elsevier, vol. 60(1), pages 54-68, March.
    17. Ko, Kate, 2009. "Home Prices and Urban Corridors," 50th Annual Transportation Research Forum, Portland, Oregon, March 16-18, 2009 207607, Transportation Research Forum.
    18. Diewert, Erwin & FOX, Kevin J. Fox & SCHREYER, Paul, 2017. "The Digital Economy, New Products and Consumer Welfare," Microeconomics.ca working papers erwin_diewert-2017-12, Vancouver School of Economics, revised 14 Dec 2017.
    19. Nicholas Oulton, 2018. "GDP and the System of National Accounts: Past, Present and Future," Discussion Papers 1802, Centre for Macroeconomics (CFM), revised Jun 2018.
    20. Federico Ciliberto & GianCarlo Moschini & Edward D. Perry, 2019. "Valuing product innovation: genetically engineered varieties in US corn and soybeans," RAND Journal of Economics, RAND Corporation, vol. 50(3), pages 615-644, September.

    More about this item

    JEL classification:

    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aea:jecper:v:31:y:2017:i:2:p:187-210. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/aeaaaea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael P. Albert (email available below). General contact details of provider: https://edirc.repec.org/data/aeaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.