IDEAS home Printed from https://ideas.repec.org/r/rje/randje/v16y1985ispringp1-17.html
   My bibliography  Save this item

The Effects of Technological Change, Experience, and Environmental Regulation on the Construction Cost of Coal-Burning Generating Units

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Bernstein, David H. & Parmeter, Christopher F., 2019. "Returns to scale in electricity generation: Replicated and revisited," Energy Economics, Elsevier, vol. 82(C), pages 4-15.
  2. Leroux, Justin & Spiro, Daniel, 2018. "Leading the unwilling: Unilateral strategies to prevent arctic oil exploration," Resource and Energy Economics, Elsevier, vol. 54(C), pages 125-149.
  3. Wilson, Charlie, 2012. "Up-scaling, formative phases, and learning in the historical diffusion of energy technologies," Energy Policy, Elsevier, vol. 50(C), pages 81-94.
  4. Heuberger, Clara F. & Rubin, Edward S. & Staffell, Iain & Shah, Nilay & Mac Dowell, Niall, 2017. "Power capacity expansion planning considering endogenous technology cost learning," Applied Energy, Elsevier, vol. 204(C), pages 831-845.
  5. Iyer, Gokul C. & Clarke, Leon E. & Edmonds, James A. & Hultman, Nathan E. & McJeon, Haewon C., 2015. "Long-term payoffs of near-term low-carbon deployment policies," Energy Policy, Elsevier, vol. 86(C), pages 493-505.
  6. Yeh, Sonia & Rubin, Edward S., 2007. "A centurial history of technological change and learning curves for pulverized coal-fired utility boilers," Energy, Elsevier, vol. 32(10), pages 1996-2005.
  7. Dismukes, David E. & Cope III, Robert F. & Mesyanzhinov, Dmitry, 1998. "Capacity and economies of scale in electric power transmission," Utilities Policy, Elsevier, vol. 7(3), pages 155-162, November.
  8. Rosendahl, Knut Einar, 2004. "Cost-effective environmental policy: implications of induced technological change," Journal of Environmental Economics and Management, Elsevier, vol. 48(3), pages 1099-1121, November.
  9. Mueller, Steffen, 2006. "Missing the spark: An investigation into the low adoption paradox of combined heat and power technologies," Energy Policy, Elsevier, vol. 34(17), pages 3153-3164, November.
  10. Garrone, Paola & Grilli, Luca, 2010. "Is there a relationship between public expenditures in energy R&D and carbon emissions per GDP? An empirical investigation," Energy Policy, Elsevier, vol. 38(10), pages 5600-5613, October.
  11. John R. Boyce & Diane P. Bischak, 2010. "Learning by Doing, Knowledge Spillovers, and Technological and Organizational Change in High-Altitude Mountaineering," Journal of Sports Economics, , vol. 11(5), pages 496-532, October.
  12. Anelí Bongers, 2017. "Learning and forgetting in the jet fighter aircraft industry," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-19, September.
  13. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
  14. Witajewski-Baltvilks, Jan & Verdolini, Elena & Tavoni, Massimo, 2015. "Bending the learning curve," Energy Economics, Elsevier, vol. 52(S1), pages 86-99.
  15. Sturm, Roland, 1999. "Cost and quality trends under managed care: is there a learning curve in behavioral health carve-out plans?," Journal of Health Economics, Elsevier, vol. 18(5), pages 591-602, October.
  16. McNerney, James & Doyne Farmer, J. & Trancik, Jessika E., 2011. "Historical costs of coal-fired electricity and implications for the future," Energy Policy, Elsevier, vol. 39(6), pages 3042-3054, June.
  17. Sascha Samadi, 2016. "A Review of Factors Influencing the Cost Development of Electricity Generation Technologies," Energies, MDPI, vol. 9(11), pages 1-25, November.
  18. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
  19. Lovering, Jessica R. & Yip, Arthur & Nordhaus, Ted, 2016. "Historical construction costs of global nuclear power reactors," Energy Policy, Elsevier, vol. 91(C), pages 371-382.
  20. Jean-Paul Bouttes & Denis Haag, 1993. "L'électricité : l'intégration européenne d'une industrie de réseau," Économie et Statistique, Programme National Persée, vol. 266(1), pages 21-30.
  21. Torstein Bye & Annegrete Bruvoll, 2008. "Multiple instruments to change energy behaviour: The emperor's new clothes?," Discussion Papers 549, Statistics Norway, Research Department.
  22. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
  23. Greaker, Mads & Lund Sagen, Eirik, 2008. "Explaining experience curves for new energy technologies: A case study of liquefied natural gas," Energy Economics, Elsevier, vol. 30(6), pages 2899-2911, November.
  24. Li, Sheng & Zhang, Xiaosong & Gao, Lin & Jin, Hongguang, 2012. "Learning rates and future cost curves for fossil fuel energy systems with CO2 capture: Methodology and case studies," Applied Energy, Elsevier, vol. 93(C), pages 348-356.
  25. Lucas W. Davis, 2012. "Prospects for Nuclear Power," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 49-66, Winter.
  26. Neij, Lena, 1997. "Use of experience curves to analyse the prospects for diffusion and adoption of renewable energy technology," Energy Policy, Elsevier, vol. 25(13), pages 1099-1107, November.
  27. Hong, Sungjun & Chung, Yanghon & Woo, Chungwon, 2015. "Scenario analysis for estimating the learning rate of photovoltaic power generation based on learning curve theory in South Korea," Energy, Elsevier, vol. 79(C), pages 80-89.
  28. Doede Wiersma, 1991. "Static and dynamic efficiency of pollution control strategies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 1(1), pages 63-82, March.
  29. John Baffoe-Bonnie, 2016. "Productivity Growth and Input Demand: The Effect of Learning by Doing in a Gold Mining Firm in a Developing Economy," International Economic Journal, Taylor & Francis Journals, vol. 30(4), pages 550-570, October.
  30. Yoris A. Au & Darrell Carpenter & Xiaogang Chen & Jan G. Clark, 2007. "Virtual Organizational Learnign in Open Source Software Development Projects," Working Papers 0013, College of Business, University of Texas at San Antonio.
  31. Robert J. Gordon, 1992. "Forward Into the Past: Productivity Retrogression in the Electric Generating Industry," NBER Working Papers 3988, National Bureau of Economic Research, Inc.
  32. Neij, Lena, 2008. "Cost development of future technologies for power generation--A study based on experience curves and complementary bottom-up assessments," Energy Policy, Elsevier, vol. 36(6), pages 2200-2211, June.
  33. Paul L. Joskow, 1997. "Restructuring, Competition and Regulatory Reform in the U.S. Electricity Sector," Journal of Economic Perspectives, American Economic Association, vol. 11(3), pages 119-138, Summer.
  34. Andrew Weiss, 1994. "Productivity Changes without Formal Training," NBER Chapters, in: Training and the Private Sector: International Comparisons, pages 149-160, National Bureau of Economic Research, Inc.
  35. Yuichiro Kamada & Fuhito Kojima, 2013. "Voter Preferences, Polarization, and Electoral Policies," Discussion Papers 12-021, Stanford Institute for Economic Policy Research.
  36. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
  37. Yacine Felk & Pascal Le Masson & Benoit Weil & Patrick Cogez, 2010. "Advanced R&D for prepositioning strategies: the economics of platform shift in high technological velocity environments," Post-Print hal-00696978, HAL.
  38. Coulomb, L. & Neuhoff, K., 2006. "Learning curves and changing product attributes: the case of wind turbines," Cambridge Working Papers in Economics 0618, Faculty of Economics, University of Cambridge.
  39. Junginger, Martin & de Visser, Erika & Hjort-Gregersen, Kurt & Koornneef, Joris & Raven, Rob & Faaij, Andre & Turkenburg, Wim, 2006. "Technological learning in bioenergy systems," Energy Policy, Elsevier, vol. 34(18), pages 4024-4041, December.
  40. Arthur van Benthem & Kenneth Gillingham & James Sweeney, 2008. "Learning-by-Doing and the Optimal Solar Policy in California," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 131-152.
  41. Iyer, Gokul & Hultman, Nathan & Fetter, Steve & Kim, Son H., 2014. "Implications of small modular reactors for climate change mitigation," Energy Economics, Elsevier, vol. 45(C), pages 144-154.
  42. Baffoe-Bonnie, John, 2004. "Learning-by-doing and input demand of a rate-of-return regulated firm," Economic Modelling, Elsevier, vol. 21(6), pages 1015-1037, December.
  43. Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
  44. Denny Ellerman, A., 1996. "The competition between coal and natural gas the importance of sunk costs," Resources Policy, Elsevier, vol. 22(1-2), pages 33-42.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.