IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v82y2019icp4-15.html
   My bibliography  Save this article

Returns to scale in electricity generation: Replicated and revisited

Author

Listed:
  • Bernstein, David H.
  • Parmeter, Christopher F.

Abstract

We replicate the findings of two influential studies on returns to scale in the United States electricity generation market. The main results are contrasted using both local-linear nonparametric regression, a technique robust to parametric functional form assumptions, as well as an updated data set. While the quantitative findings across all of the estimators deployed differ somewhat regarding the magnitude of returns to scale, we document a decrease in returns to scale within the electricity generation market from 1955 to 1996.

Suggested Citation

  • Bernstein, David H. & Parmeter, Christopher F., 2019. "Returns to scale in electricity generation: Replicated and revisited," Energy Economics, Elsevier, vol. 82(C), pages 4-15.
  • Handle: RePEc:eee:eneeco:v:82:y:2019:i:c:p:4-15
    DOI: 10.1016/j.eneco.2017.12.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988317304449
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. RITTER, Christian & SIMAR, Léopold, 1994. "Another Look at the American Electrical Utility Data," LIDAM Discussion Papers CORE 1994007, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Paul Joskow & Nancy L. Rose, 1985. "The Effects of Technological Change, Experience, and Environmental Regulation on the Construction Cost of Coal-Burning Generating Units," RAND Journal of Economics, The RAND Corporation, vol. 16(1), pages 1-17, Spring.
    3. Christian Ritter & Léopold Simar, 1997. "Pitfalls of Normal-Gamma Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 8(2), pages 167-182, May.
    4. Rungsuriyawiboon, Supawat & Stefanou, Spiro E., 2007. "Dynamic Efficiency Estimation: An Application to U.S. Electric Utilities," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 226-238, April.
    5. Greene, William H., 1990. "A Gamma-distributed stochastic frontier model," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 141-163.
    6. McNerney, James & Doyne Farmer, J. & Trancik, Jessika E., 2011. "Historical costs of coal-fired electricity and implications for the future," Energy Policy, Elsevier, vol. 39(6), pages 3042-3054, June.
    7. Henningsen, Arne & Hamann, Jeff D., 2007. "systemfit: A Package for Estimating Systems of Simultaneous Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 23(i04).
    8. Wheelock, David C. & Wilson, Paul W., 2001. "New evidence on returns to scale and product mix among U.S. commercial banks," Journal of Monetary Economics, Elsevier, vol. 47(3), pages 653-674, June.
    9. David C. Wheelock & Paul W. Wilson, 2012. "Do Large Banks Have Lower Costs? New Estimates of Returns to Scale for U.S. Banks," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(1), pages 171-199, February.
    10. Diewert, Walter E & Wales, Terence J, 1987. "Flexible Functional Forms and Global Curvature Conditions," Econometrica, Econometric Society, vol. 55(1), pages 43-68, January.
    11. Severin Borenstein & James Bushnell, 2015. "The US Electricity Industry After 20 Years of Restructuring," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 437-463, August.
    12. Hanoch, Giora, 1975. "The Elasticity of Scale and the Shape of Average Costs," American Economic Review, American Economic Association, vol. 65(3), pages 492-497, June.
    13. Timothy J. Considine, 2000. "Cost Structures for Fossil Fuel-Fired Electric Power Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 83-104.
    14. Hall, Peter G. & Racine, Jeffrey S., 2015. "Infinite order cross-validated local polynomial regression," Journal of Econometrics, Elsevier, vol. 185(2), pages 510-525.
    15. John Kwoka, 2008. "Restructuring the U.S. Electric Power Sector: A Review of Recent Studies," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 32(3), pages 165-196, May.
    16. Atkinson, Scott E & Halvorsen, Robert, 1984. "Parametric Efficiency Tests, Economies of Scale, and Input Demand in U.S. Electric Power Generation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(3), pages 647-662, October.
    17. Kira R. Fabrizio & Nancy L. Rose & Catherine D. Wolfram, 2007. "Do Markets Reduce Costs? Assessing the Impact of Regulatory Restructuring on US Electric Generation Efficiency," American Economic Review, American Economic Association, vol. 97(4), pages 1250-1277, September.
    18. Henderson,Daniel J. & Parmeter,Christopher F., 2015. "Applied Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521279680.
    19. Hayfield, Tristen & Racine, Jeffrey S., 2008. "Nonparametric Econometrics: The np Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i05).
    20. Dhrymes, Phoebus J, 1971. "Equivalence of Iterative Aitken and Maximum Likelihood Estimators for a System of Regression Equations," Australian Economic Papers, Wiley Blackwell, vol. 10(16), pages 20-24, June.
    21. Christensen, Laurits R & Greene, William H, 1976. "Economies of Scale in U.S. Electric Power Generation," Journal of Political Economy, University of Chicago Press, vol. 84(4), pages 655-676, August.
    22. Christopher R. Knittel, 2002. "Alternative Regulatory Methods And Firm Efficiency: Stochastic Frontier Evidence From The U.S. Electricity Industry," The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 530-540, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernstein, David H., 2020. "An updated assessment of technical efficiency and returns to scale for U.S. electric power plants," Energy Policy, Elsevier, vol. 147(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guohua Feng & Jiti Gao & Xiaohui Zhang, 2018. "Estimation of technical change and price elasticities: a categorical time–varying coefficient approach," Journal of Productivity Analysis, Springer, vol. 50(3), pages 117-138, December.
    2. Bernstein, David H., 2020. "An updated assessment of technical efficiency and returns to scale for U.S. electric power plants," Energy Policy, Elsevier, vol. 147(C).
    3. David H. Bernstein & Christopher F. Parmeter, 2017. "Returns to Scale in Electricity Generation: Revisited and Replicated," Working Papers 2017-08, University of Miami, Department of Economics.
    4. Supawat Rungsuriyawiboon & Spiro Stefanou, 2008. "The dynamics of efficiency and productivity growth in U.S. electric utilities," Journal of Productivity Analysis, Springer, vol. 30(3), pages 177-190, December.
    5. Ajayi, Victor & Weyman-Jones, Thomas & Glass, Anthony, 2017. "Cost efficiency and electricity market structure: A case study of OECD countries," Energy Economics, Elsevier, vol. 65(C), pages 283-291.
    6. Glass, Anthony J. & Kenjegaliev, Amangeldi & Kenjegalieva, Karligash, 2020. "Spatial scale and product mix economies in U.S. banking with simultaneous spillover regimes," European Journal of Operational Research, Elsevier, vol. 284(2), pages 693-711.
    7. Christopher F. Parmeter & Valentin Zelenyuk, 2019. "Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis," Operations Research, INFORMS, vol. 67(6), pages 1628-1658, November.
    8. Stefan Seifert, 2015. "Measuring Productivity When Technologies Are Heterogeneous: A Semi-Parametric Approach for Electricity Generation," Discussion Papers of DIW Berlin 1526, DIW Berlin, German Institute for Economic Research.
    9. William Greene, 2003. "Simulated Likelihood Estimation of the Normal-Gamma Stochastic Frontier Function," Journal of Productivity Analysis, Springer, vol. 19(2), pages 179-190, April.
    10. Daniel J. Henderson & Anne-Charlotte Souto, 2018. "An Introduction to Nonparametric Regression for Labor Economists," Journal of Labor Research, Springer, vol. 39(4), pages 355-382, December.
    11. Gian Carlo Scarsi, 1999. "Local Electricity Distribution in Italy: Comparative Efficiency Analysis and Methodological Cross-Checking," Working Papers 1999.16, Fondazione Eni Enrico Mattei.
    12. Zach Flynn, 2020. "Identifying productivity when it is a factor of production," RAND Journal of Economics, RAND Corporation, vol. 51(2), pages 496-530, June.
    13. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2017. "Stochastic Frontier Analysis: Foundations and Advances," Working Papers 2017-10, University of Miami, Department of Economics.
    14. Supawat Rungsuriyawiboon & Tim Coelli, 2004. "Regulatory Reform and Economic Performance in US Electricity Generation," CEPA Working Papers Series WP062004, School of Economics, University of Queensland, Australia.
    15. Behr, Andreas & Tente, Sebastian, 2008. "Stochastic frontier analysis by means of maximum likelihood and the method of moments," Discussion Paper Series 2: Banking and Financial Studies 2008,19, Deutsche Bundesbank.
    16. Du, Limin & He, Yanan & Yan, Jianye, 2013. "The effects of electricity reforms on productivity and efficiency of China's fossil-fired power plants: An empirical analysis," Energy Economics, Elsevier, vol. 40(C), pages 804-812.
    17. Supawat Rungsuriyawiboon & Chris O'Donnell, 2004. "Curvature-Constrained Estimates of Technical Efficiency and Returns to Scale for U.S. Electric Utilities," CEPA Working Papers Series WP072004, School of Economics, University of Queensland, Australia.
    18. Walheer, Barnabé, 2018. "Scale efficiency for multi-output cost minimizing producers: The case of the US electricity plants," Energy Economics, Elsevier, vol. 70(C), pages 26-36.
    19. Wilson, Paul W., 2018. "Dimension reduction in nonparametric models of production," European Journal of Operational Research, Elsevier, vol. 267(1), pages 349-367.
    20. Karney, Daniel H., 2019. "Electricity market deregulation and environmental regulation: Evidence from U.S. nuclear power," Energy Economics, Elsevier, vol. 84(C).

    More about this item

    Keywords

    System estimation; Shephard's lemma; Seemingly unrelated regression; Nonparametric; Replication;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • D22 - Microeconomics - - Production and Organizations - - - Firm Behavior: Empirical Analysis
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Lists

    This item is featured on the following reading lists, Wikipedia, or ReplicationWiki pages:
    1. Returns to scale in electricity generation: Replicated and revisited (Energy Economics 2019) in ReplicationWiki

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:82:y:2019:i:c:p:4-15. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/locate/eneco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.