IDEAS home Printed from https://ideas.repec.org/p/zbw/bubdp2/200819.html
   My bibliography  Save this paper

Stochastic frontier analysis by means of maximum likelihood and the method of moments

Author

Listed:
  • Behr, Andreas
  • Tente, Sebastian

Abstract

The stochastic frontier analysis (Aigner et al., 1977, Meeusen and van de Broeck, 1977) is widely used to estimate individual efficiency scores. The basic idea lies in the introduction of an additive error term consisting of a noise and an inefficiency term. Most often the assumption of a half-normal distributed inefficiency term is applied, but other distributions are also discussed in relevant literature. The natural estimation method seems to be Maximum Likelihood (ML) estimation because of the parametric assumptions. But simulation results obtained for the half normal model indicate that a method of moments approach (MOM) (Olson et al., 1980) is superior for small and medium sized samples in combination with inefficiency not strongly dominating noise (Coelli, 1995). In this paper we provide detailed simulation results comparing the two estimation approaches for both the half-normal and the exponential approach to inefficiency. Based on the simulation results we obtain decision rules for the choice of the superior estimation approach. Both estimation methods, ML and MOM, are applied to a sample of German commercial banks based on the Bankscope database for estimation of cost efficiency scores.

Suggested Citation

  • Behr, Andreas & Tente, Sebastian, 2008. "Stochastic frontier analysis by means of maximum likelihood and the method of moments," Discussion Paper Series 2: Banking and Financial Studies 2008,19, Deutsche Bundesbank.
  • Handle: RePEc:zbw:bubdp2:200819
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/27682/1/589856022.PDF
    Download Restriction: no

    References listed on IDEAS

    as
    1. Shrimal Perera & Michael Skully & J. Wickramanayake, 2007. "Cost Efficiency in South Asian Banking: The Impact of Bank Size, State Ownership and Stock Exchange Listings-super-," International Review of Finance, International Review of Finance Ltd., vol. 7(1-2), pages 35-60.
    2. Christian Ritter & Léopold Simar, 1997. "Pitfalls of Normal-Gamma Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 8(2), pages 167-182, May.
    3. George E. Battese & Lennart Hjalmarsson & Almas Heshmati, 2000. "Efficiency of labour use in the Swedish banking industry: a stochastic frontier approach," Empirical Economics, Springer, vol. 25(4), pages 623-640.
    4. Lang, Gunter & Welzel, Peter, 1996. "Efficiency and technical progress in banking Empirical results for a panel of German cooperative banks," Journal of Banking & Finance, Elsevier, vol. 20(6), pages 1003-1023, July.
    5. Olson, Jerome A. & Schmidt, Peter & Waldman, Donald M., 1980. "A Monte Carlo study of estimators of stochastic frontier production functions," Journal of Econometrics, Elsevier, vol. 13(1), pages 67-82, May.
    6. Claudia Girardone & Philip Molyneux & Edward Gardener, 2004. "Analysing the determinants of bank efficiency: the case of Italian banks," Applied Economics, Taylor & Francis Journals, vol. 36(3), pages 215-227.
    7. Altunbas, Y. & Chakravarty, S. P., 2001. "Frontier cost functions and bank efficiency," Economics Letters, Elsevier, vol. 72(2), pages 233-240, August.
    8. Subal Kumbhakar & Efthymios Tsionas, 2008. "Scale and efficiency measurement using a semiparametric stochastic frontier model: evidence from the U.S. commercial banks," Empirical Economics, Springer, vol. 34(3), pages 585-602, June.
    9. Altunbas, Yener & Liu, Ming-Hau & Molyneux, Philip & Seth, Rama, 2000. "Efficiency and risk in Japanese banking," Journal of Banking & Finance, Elsevier, vol. 24(10), pages 1605-1628, October.
    10. Trevor Fitzpatrick & Kieran McQuinn, 2005. "Labour Cost Efficiency in UK and Irish Credit Institutions," The Economic and Social Review, Economic and Social Studies, vol. 36(1), pages 45-66.
    11. RITTER, Christian & SIMAR, Léopold, 1994. "Another Look at the American Electrical Utility Data," CORE Discussion Papers 1994007, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Ferrier, Gary D. & Lovell, C. A. Knox, 1990. "Measuring cost efficiency in banking : Econometric and linear programming evidence," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 229-245.
    13. Fitzpatrick, Trevor & McQuinn, Kieran, 2004. "Cost Efficiency in UK and Irish Credit Institutions," Research Technical Papers 3/RT/04, Central Bank of Ireland.
    14. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    15. Mester, Loretta J., 1996. "A study of bank efficiency taking into account risk-preferences," Journal of Banking & Finance, Elsevier, vol. 20(6), pages 1025-1045, July.
    16. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
    17. Greene, William H., 1990. "A Gamma-distributed stochastic frontier model," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 141-163.
    18. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    19. Kumbhakar,Subal C. & Lovell,C. A. Knox, 2003. "Stochastic Frontier Analysis," Cambridge Books, Cambridge University Press, number 9780521666633, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aiello, Francesco & Bonanno, Graziella, 2014. "On the Sources of Heterogeneity in Banking Efficiency Literature," MPRA Paper 58591, University Library of Munich, Germany.
    2. Francesco Aiello & Graziella Bonanno, 2016. "Efficiency in banking: a meta-regression analysis," International Review of Applied Economics, Taylor & Francis Journals, vol. 30(1), pages 112-149, January.
    3. Jugal Mahabir, 2014. "Quantifying Inefficient Expenditure in Local Government: A Free Disposable Hull Analysis of a Sample of South African Municipalities," South African Journal of Economics, Economic Society of South Africa, vol. 82(4), pages 493-517, December.

    More about this item

    Keywords

    stochastic frontier; Maximum Likelihood; Method of moments; Bank efficiency;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bubdp2:200819. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: http://edirc.repec.org/data/dbbgvde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.