IDEAS home Printed from https://ideas.repec.org/r/oup/restud/v76y2009i2p669-705.html
   My bibliography  Save this item

Detecting and Predicting Forecast Breakdowns

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
  2. Kreye, Tom Jannik & Sibbertsen, Philipp, 2024. "Testing for a Forecast Accuracy Breakdown under Long Memory," Hannover Economic Papers (HEP) dp-729, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
  3. Salisu, Afees A. & Adekunle, Wasiu & Alimi, Wasiu A. & Emmanuel, Zachariah, 2019. "Predicting exchange rate with commodity prices: New evidence from Westerlund and Narayan (2015) estimator with structural breaks and asymmetries," Resources Policy, Elsevier, vol. 62(C), pages 33-56.
  4. Li, Haixi & Sheng, Xuguang Simon & Yang, Jingyun, 2021. "Monitoring recessions: A Bayesian sequential quickest detection method," International Journal of Forecasting, Elsevier, vol. 37(2), pages 500-510.
  5. Laura Coroneo & Fabrizio Iacone, 2020. "Comparing predictive accuracy in small samples using fixed‐smoothing asymptotics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 391-409, June.
  6. Christodoulakis, George & Mamatzakis, Emmanuel, 2013. "Behavioural asymmetries in the G7 foreign exchange market," International Review of Financial Analysis, Elsevier, vol. 29(C), pages 261-270.
  7. Michael Dotsey & Shigeru Fujita & Tom Stark, 2018. "Do Phillips Curves Conditionally Help to Forecast Inflation?," International Journal of Central Banking, International Journal of Central Banking, vol. 14(4), pages 43-92, September.
  8. Casini, Alessandro & Perron, Pierre, 2024. "Prewhitened long-run variance estimation robust to nonstationarity," Journal of Econometrics, Elsevier, vol. 242(1).
  9. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
  10. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
  11. Mamatzakis, Emmanuel & Tsionas, Mike G., 2015. "How are market preferences shaped? The case of sovereign debt of stressed euro-area countries," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 106-116.
  12. Pesaran, M. Hashem & Pick, Andreas & Pranovich, Mikhail, 2013. "Optimal forecasts in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 134-152.
  13. Afees A. Salisu & Wasiu Adekunle & Zachariah Emmanuel & Wasiu A. Alimi, 2018. "Predicting exchange rate with commodity prices: The role of structural breaks and asymmetries," Working Papers 055, Centre for Econometric and Allied Research, University of Ibadan.
  14. Barbara Rossi & Tatevik Sekhposyan, 2016. "Forecast Rationality Tests in the Presence of Instabilities, with Applications to Federal Reserve and Survey Forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(3), pages 507-532, April.
  15. Prasad S Bhattacharya & Dimitrios D Thomakos, 2011. "Improving forecasting performance by window and model averaging," CAMA Working Papers 2011-05, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  16. Matei Demetrescu & Christoph Hanck & Robinson Kruse‐Becher, 2022. "Robust inference under time‐varying volatility: A real‐time evaluation of professional forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 1010-1030, August.
  17. Giovanni Calice & Christos Ioannidis & Julian Williams, 2012. "Credit Derivatives and the Default Risk of Large Complex Financial Institutions," Journal of Financial Services Research, Springer;Western Finance Association, vol. 42(1), pages 85-107, October.
  18. Lyócsa, Štefan & Molnár, Peter, 2018. "Exploiting dependence: Day-ahead volatility forecasting for crude oil and natural gas exchange-traded funds," Energy, Elsevier, vol. 155(C), pages 462-473.
  19. Raffaella Giacomini & Barbara Rossi, 2006. "How Stable is the Forecasting Performance of the Yield Curve for Output Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 783-795, December.
  20. Panagiotelis, Anastasios & Athanasopoulos, George & Hyndman, Rob J. & Jiang, Bin & Vahid, Farshid, 2019. "Macroeconomic forecasting for Australia using a large number of predictors," International Journal of Forecasting, Elsevier, vol. 35(2), pages 616-633.
  21. Alessandro Casini, 2021. "Theory of Evolutionary Spectra for Heteroskedasticity and Autocorrelation Robust Inference in Possibly Misspecified and Nonstationary Models," Papers 2103.02981, arXiv.org, revised Aug 2024.
  22. Siddhartha S. Bora & Ani L. Katchova & Todd H. Kuethe, 2021. "The Rationality of USDA Forecasts under Multivariate Asymmetric Loss," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 1006-1033, May.
  23. Davide Pettenuzzo & Allan Timmermann, 2017. "Forecasting Macroeconomic Variables Under Model Instability," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 183-201, April.
  24. Rossi, Barbara & Sekhposyan, Tatevik, 2011. "Understanding models' forecasting performance," Journal of Econometrics, Elsevier, vol. 164(1), pages 158-172, September.
  25. Yu Jeffrey Hu & Jeroen Rombouts & Ines Wilms, 2023. "Fast Forecasting of Unstable Data Streams for On-Demand Service Platforms," Papers 2303.01887, arXiv.org, revised May 2024.
  26. Jin, Sainan & Corradi, Valentina & Swanson, Norman R., 2017. "Robust Forecast Comparison," Econometric Theory, Cambridge University Press, vol. 33(6), pages 1306-1351, December.
  27. Gibbs, Christopher G. & Vasnev, Andrey L., 2024. "Conditionally optimal weights and forward-looking approaches to combining forecasts," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1734-1751.
  28. repec:zbw:rwirep:0080 is not listed on IDEAS
  29. Pincheira-Brown, Pablo & Selaive, Jorge & Nolazco, Jose Luis, 2019. "Forecasting inflation in Latin America with core measures," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1060-1071.
  30. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
  31. Federico Belotti & Alessandro Casini & Leopoldo Catania & Stefano Grassi & Pierre Perron, 2023. "Simultaneous bandwidths determination for DK-HAC estimators and long-run variance estimation in nonparametric settings," Econometric Reviews, Taylor & Francis Journals, vol. 42(3), pages 281-306, February.
  32. Travis J. Berge, 2014. "Forecasting Disconnected Exchange Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 713-735, August.
  33. Raffaella Giacomini, 2014. "Economic theory and forecasting: lessons from the literature," CeMMAP working papers 41/14, Institute for Fiscal Studies.
  34. Procasky, William J. & Yin, Anwen, 2023. "The impact of COVID-19 on the relative market efficiency and forecasting ability of credit derivative and equity markets," International Review of Financial Analysis, Elsevier, vol. 90(C).
  35. Allan Timmermann, 2018. "Forecasting Methods in Finance," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 449-479, November.
  36. Mwasi Paza Mboya & Philipp Sibbertsen, 2023. "Optimal forecasts in the presence of discrete structural breaks under long memory," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1889-1908, November.
  37. Clark, Todd E. & McCracken, Michael W., 2009. "Tests of Equal Predictive Ability With Real-Time Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 441-454.
  38. Corradi, Valentina & Swanson, Norman R., 2014. "Testing for structural stability of factor augmented forecasting models," Journal of Econometrics, Elsevier, vol. 182(1), pages 100-118.
  39. Mariia Artemova & Francisco Blasques & Siem Jan Koopman & Zhaokun Zhang, 2021. "Forecasting in a changing world: from the great recession to the COVID-19 pandemic," Tinbergen Institute Discussion Papers 21-006/III, Tinbergen Institute.
  40. Yin, Xiao-Cui & Li, Xin & Wang, Min-Hui & Qin, Meng & Shao, Xue-Feng, 2021. "Do economic policy uncertainty and its components predict China's housing returns?," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
  41. Pablo M. Pincheira & Carlos A. Medel, 2016. "Forecasting with a Random Walk," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(6), pages 539-564, December.
  42. Raffaella Giacomini, 2015. "Economic theory and forecasting: lessons from the literature," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 22-41, June.
  43. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Papers 1805.03807, arXiv.org.
  44. Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
  45. Kreye, Tom Jannik & Sibbertsen, Philipp, 2024. "Testing for a Forecast Accuracy Breakdown under Long Memory," Hannover Economic Papers (HEP) dp-729, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
  46. Döhrn, Roland & Schmidt, Christoph M. & Zimmermann, Tobias, 2008. "Inflation Forecasting with Inflation Sentiment Indicators," Ruhr Economic Papers 80, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
  47. Raffaella Giacomini & Barbara Rossi, 2015. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
  48. Chiu, Ching-Wai (Jeremy) & Hayes, Simon & Kapetanios, George & Theodoridis, Konstantinos, 2019. "A new approach for detecting shifts in forecast accuracy," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1596-1612.
  49. E. Mamatzakis, 2014. "Revealing asymmetries in the loss function of WTI oil futures market," Empirical Economics, Springer, vol. 47(2), pages 411-426, September.
  50. Cotter, John & Eyiah-Donkor, Emmanuel & Potì, Valerio, 2023. "Commodity futures return predictability and intertemporal asset pricing," Journal of Commodity Markets, Elsevier, vol. 31(C).
  51. Chevillon, Guillaume, 2016. "Multistep forecasting in the presence of location shifts," International Journal of Forecasting, Elsevier, vol. 32(1), pages 121-137.
  52. De Pace, Pierangelo & Weber, Kyle D., 2016. "The time-varying leading properties of the high yield spread in the United States," International Journal of Forecasting, Elsevier, vol. 32(1), pages 203-230.
  53. Pesaran, M. Hashem & Pick, Andreas & Pranovich, Mikhail, 2013. "Optimal forecasts in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 134-152.
  54. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2024. "Improving models and forecasts after equilibrium-mean shifts," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1085-1100.
  55. Inoue, Atsushi & Jin, Lu & Rossi, Barbara, 2017. "Rolling window selection for out-of-sample forecasting with time-varying parameters," Journal of Econometrics, Elsevier, vol. 196(1), pages 55-67.
  56. Rachidi Kotchoni & Maxime Leroux & Dalibor Stevanovic, 2019. "Macroeconomic forecast accuracy in a data‐rich environment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1050-1072, November.
  57. Chollete, Loran & Schmeidler, David, 2014. "Extreme Events and the Origin of Central Bank Priors," UiS Working Papers in Economics and Finance 2014/15, University of Stavanger.
  58. Benjamin Beckers, 2015. "The Real-Time Predictive Content of Asset Price Bubbles for Macro Forecasts," Discussion Papers of DIW Berlin 1496, DIW Berlin, German Institute for Economic Research.
  59. Valentina Corradi & Sainan Jin & Norman R. Swanson, 2023. "Robust forecast superiority testing with an application to assessing pools of expert forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 596-622, June.
  60. Argyropoulos, Efthymios & Tzavalis, Elias, 2016. "Forecasting economic activity from yield curve factors," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 293-311.
  61. Byron Botha & Geordie Reid & Tim Olds & Daan Steenkamp & Rossouw van Jaarsveld, 2021. "Nowcasting South African GDP using a suite of statistical models," Working Papers 11001, South African Reserve Bank.
  62. Jiahan Li & Ilias Tsiakas & Wei Wang, 2015. "Predicting Exchange Rates Out of Sample: Can Economic Fundamentals Beat the Random Walk?," Journal of Financial Econometrics, Oxford University Press, vol. 13(2), pages 293-341.
  63. Michael W. McCracken, 2020. "Tests of Conditional Predictive Ability: Existence, Size, and Power," Working Papers 2020-050, Federal Reserve Bank of St. Louis.
  64. Christopher G. Gibbs, 2015. "Overcoming the Forecast Combination Puzzle: Lessons from the Time-Varying Effciency of Phillips Curve Forecasts of U.S. Inflation," Discussion Papers 2015-09, School of Economics, The University of New South Wales.
  65. Peter Reinhard Hansen & Allan Timmermann, 2015. "Comment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 17-21, January.
  66. Boot, Tom & Pick, Andreas, 2020. "Does modeling a structural break improve forecast accuracy?," Journal of Econometrics, Elsevier, vol. 215(1), pages 35-59.
  67. David C. Wheelock & Mark E. Wohar, 2009. "Can the term spread predict output growth and recessions? a survey of the literature," Review, Federal Reserve Bank of St. Louis, vol. 91(Sep), pages 419-440.
  68. Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2024. "Predicting Bond Return Predictability," Management Science, INFORMS, vol. 70(2), pages 931-951, February.
  69. Graham Elliott & Allan Timmermann, 2016. "Forecasting in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 81-110, October.
  70. Byron Botha & Tim Olds & Geordie Reid & Daan Steenkamp & Rossouw van Jaarsveld, 2021. "Nowcasting South African gross domestic product using a suite of statistical models," South African Journal of Economics, Economic Society of South Africa, vol. 89(4), pages 526-554, December.
  71. William J. Procasky & Anwen Yin, 2022. "Forecasting high‐yield equity and CDS index returns: Does observed cross‐market informational flow have predictive power?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(8), pages 1466-1490, August.
  72. Wang, Yudong & Hao, Xianfeng, 2023. "Forecasting the real prices of crude oil: What is the role of parameter instability?," Energy Economics, Elsevier, vol. 117(C).
  73. Yin, Anwen, 2015. "Forecasting and model averaging with structural breaks," ISU General Staff Papers 201501010800005727, Iowa State University, Department of Economics.
  74. Camila Figueroa & Jorge Fornero & Pablo García, 2019. "Hindsight vs. Real time measurement of the output gap: Implications for the Phillips curve in the Chilean Case," Working Papers Central Bank of Chile 854, Central Bank of Chile.
  75. Tom Boot & Andreas Pick, 2017. "A near optimal test for structural breaks when forecasting under square error loss," Tinbergen Institute Discussion Papers 17-039/III, Tinbergen Institute.
  76. Brave, Scott A. & Butters, R. Andrew & Justiniano, Alejandro, 2019. "Forecasting economic activity with mixed frequency BVARs," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1692-1707.
  77. Timmermann, Allan, 2018. "Forecasting Methods in Finance," CEPR Discussion Papers 12692, C.E.P.R. Discussion Papers.
  78. Alessandro Casini, 2018. "Tests for Forecast Instability and Forecast Failure under a Continuous Record Asymptotic Framework," Papers 1803.10883, arXiv.org, revised Dec 2018.
  79. Lenza, Michele & Moutachaker, Inès & Paredes, Joan, 2023. "Density forecasts of inflation: a quantile regression forest approach," CEPR Discussion Papers 18298, C.E.P.R. Discussion Papers.
  80. Mamatzakis, E. & Koutsomanoli-Filippaki, A., 2014. "Testing the rationality of DOE's energy price forecasts under asymmetric loss preferences," Energy Policy, Elsevier, vol. 68(C), pages 567-575.
  81. Pierre Perron & Yohei Yamamoto, 2021. "Testing for Changes in Forecasting Performance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 148-165, January.
  82. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
  83. Chad Fulton & Kirstin Hubrich, 2021. "Forecasting US Inflation in Real Time," Econometrics, MDPI, vol. 9(4), pages 1-20, October.
  84. Barbara Rossi, 2014. "Comment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 510-514, October.
  85. Zhang, Shulin & Okhrin, Ostap & Zhou, Qian M. & Song, Peter X.-K., 2016. "Goodness-of-fit test for specification of semiparametric copula dependence models," Journal of Econometrics, Elsevier, vol. 193(1), pages 215-233.
  86. Christodoulakis, George, 2020. "Estimating the term structure of commodity market preferences," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1146-1163.
  87. Salisu, Afees A. & Swaray, Raymond & Oloko, Tirimisiyu F., 2019. "Improving the predictability of the oil–US stock nexus: The role of macroeconomic variables," Economic Modelling, Elsevier, vol. 76(C), pages 153-171.
  88. Roland Döhrn & Christoph M. Schmidt & Tobias Zimmermann, 2008. "Inflation Forecasting with Inflation Sentiment Indicators," Ruhr Economic Papers 0080, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
  89. Michael W. McCracken, 2019. "Tests of Conditional Predictive Ability: Some Simulation Evidence," Working Papers 2019-11, Federal Reserve Bank of St. Louis.
  90. KUROZUMI, Eiji & 黒住, 英司, 2016. "Monitoring Parameter Constancy with Endogenous Regressors," Discussion Papers 2016-01, Graduate School of Economics, Hitotsubashi University.
  91. Alisa Yusupova & Nicos G. Pavlidis & Efthymios G. Pavlidis, 2019. "Adaptive Dynamic Model Averaging with an Application to House Price Forecasting," Papers 1912.04661, arXiv.org.
  92. Salisu, Afees A. & Ndako, Umar B. & Oloko, Tirimisiyu F., 2019. "Assessing the inflation hedging of gold and palladium in OECD countries," Resources Policy, Elsevier, vol. 62(C), pages 357-377.
  93. Doyle, Matthew, 2006. "Empirical Phillips Curves in OECD Countries: Has There Been A Common Breakdown?," Staff General Research Papers Archive 12684, Iowa State University, Department of Economics.
  94. Calhoun, Gray, 2014. "Out-Of-Sample Comparisons of Overfit Models," Staff General Research Papers Archive 32462, Iowa State University, Department of Economics.
  95. Casini, Alessandro, 2023. "Theory of evolutionary spectra for heteroskedasticity and autocorrelation robust inference in possibly misspecified and nonstationary models," Journal of Econometrics, Elsevier, vol. 235(2), pages 372-392.
  96. Carstensen, Kai, 2007. "Is core money growth a good and stable inflation predictor in the euro area?," Kiel Working Papers 1318, Kiel Institute for the World Economy (IfW Kiel).
  97. Todd E. Clark & Michael W. McCracken, 2010. "Testing for unconditional predictive ability," Working Papers 2010-031, Federal Reserve Bank of St. Louis.
  98. Li, Jia & Patton, Andrew J., 2018. "Asymptotic inference about predictive accuracy using high frequency data," Journal of Econometrics, Elsevier, vol. 203(2), pages 223-240.
  99. Clements, Michael P., 2021. "Do survey joiners and leavers differ from regular participants? The US SPF GDP growth and inflation forecasts," International Journal of Forecasting, Elsevier, vol. 37(2), pages 634-646.
  100. Rossi, Barbara & Inoue, Atsushi & Jin, Lu, 2014. "Window Selection for Out-of-Sample Forecasting with Time-Varying Parameters," CEPR Discussion Papers 10168, C.E.P.R. Discussion Papers.
  101. David Hendry & Michael P. Clements, 2010. "Forecasting from Mis-specified Models in the Presence of Unanticipated Location Shifts," Economics Series Working Papers 484, University of Oxford, Department of Economics.
  102. Pesaran, M.H. & Pick, A. & Pranovich, M., 2011. "Optimal Forecasts in the Presence of Structural Breaks (Updated 14 November 2011)," Cambridge Working Papers in Economics 1163, Faculty of Economics, University of Cambridge.
  103. Wang, Yudong & Hao, Xianfeng & Wu, Chongfeng, 2021. "Forecasting stock returns: A time-dependent weighted least squares approach," Journal of Financial Markets, Elsevier, vol. 53(C).
  104. Argyropoulos, Efthymios & Tzavalis, Elias, 2015. "Real term structure forecasts of consumption growth," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 208-222.
  105. Jakob Krause, 2019. "A convergence-speed-dependent data quantity definition and its effect on risk estimation," Journal of Asset Management, Palgrave Macmillan, vol. 20(6), pages 469-475, October.
  106. Alessandro Casini & Taosong Deng & Pierre Perron, 2021. "Theory of Low Frequency Contamination from Nonstationarity and Misspecification: Consequences for HAR Inference," Papers 2103.01604, arXiv.org, revised Sep 2024.
  107. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
  108. Chollete, Lor & Schmeidler, David, 2014. "Misspecification Aversion and Selection of Initial Priors," UiS Working Papers in Economics and Finance 2014/13, University of Stavanger.
  109. Mike Buckle & Jing Chen & Julian Williams, 2014. "How Predictable Are Equity Covariance Matrices? Evidence from High‐Frequency Data for Four Markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(7), pages 542-557, November.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.