IDEAS home Printed from https://ideas.repec.org/r/kap/transp/v26y1999i2p193-229.html
   My bibliography  Save this item

Discretionary activity time allocation of individuals between in-home and out-of-home and between weekdays and weekends

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Italo Meloni & Erika Spissu & Massimiliano Bez, 2007. "A Model of the Dynamic Process of Time Allocation to Discretionary Activities," Transportation Science, INFORMS, vol. 41(1), pages 15-28, February.
  2. Chen, Cynthia & Mokhtarian, Patricia L, 2005. "An Exploratory Study Using an AIDS Model For Tradeoffs Between Time Allocations to Maintenance Activities/Travel and Discretionary Activities/Travel," Institute of Transportation Studies, Working Paper Series qt2wr907nc, Institute of Transportation Studies, UC Davis.
  3. Dick Ettema & Olu Ashiru & John Polak & Fabian Bastin, 2005. "Taste Heterogeneity and Substitution Patterns in Models of the Simultaneous Choice of Activity Timing and Duration," ERSA conference papers ersa05p439, European Regional Science Association.
  4. Ruiz, Tomás & Habib, Khandker Nurul, 2016. "Scheduling decision styles on leisure and social activities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 304-317.
  5. Marcela Munizaga & Sergio Jara-Díaz & Paulina Greeven & Chandra Bhat, 2008. "Econometric Calibration of the Joint Time Assignment--Mode Choice Model," Transportation Science, INFORMS, vol. 42(2), pages 208-219, May.
  6. Golob, Thomas F., 2002. "travelbehavior.com - Activity Approaches to Modeling the Effects of Information Technology on Personal Travel Behavior," University of California Transportation Center, Working Papers qt9t40s1mc, University of California Transportation Center.
  7. Golob, Thomas F. & Regan, Amelia C., 2001. "Impacts of Information Technology on Personal Tavel and Commercial Vehicle Operations: Research Challenges and Opportunities," University of California Transportation Center, Working Papers qt95r7j7vk, University of California Transportation Center.
  8. Bhat, Chandra R. & Srinivasan, Sivaramakrishnan & Sen, Sudeshna, 2006. "A joint model for the perfect and imperfect substitute goods case: Application to activity time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 827-850, December.
  9. Erika Spissu & Abdul Pinjari & Chandra Bhat & Ram Pendyala & Kay Axhausen, 2009. "An analysis of weekly out-of-home discretionary activity participation and time-use behavior," Transportation, Springer, vol. 36(5), pages 483-510, September.
  10. Pinjari, Abdul Rawoof & Bhat, Chandra, 2010. "A multiple discrete-continuous nested extreme value (MDCNEV) model: Formulation and application to non-worker activity time-use and timing behavior on weekdays," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 562-583, May.
  11. Ram Pendyala & Toshiyuki Yamamoto & Ryuichi Kitamura, 2002. "On the formulation of time-space prisms to model constraints on personal activity-travel engagement," Transportation, Springer, vol. 29(1), pages 73-94, February.
  12. Bhat, Chandra R. & Gossen, Rachel, 2004. "A mixed multinomial logit model analysis of weekend recreational episode type choice," Transportation Research Part B: Methodological, Elsevier, vol. 38(9), pages 767-787, November.
  13. Tai-Yu Ma & Iragaël Joly & Charles Raux, 2010. "A shared frailty semi-parametric markov renewal model for travel and activity time-use pattern analysis," Working Papers hal-00477695, HAL.
  14. Jacobsen, Joyce P. & Kooreman, Peter, 2005. "Timing constraints and the allocation of time: The effects of changing shopping hours regulations in The Netherlands," European Economic Review, Elsevier, vol. 49(1), pages 9-27, January.
  15. Lin, Tao & Wang, Donggen, 2015. "Tradeoffs between in- and out-of-residential neighborhood locations for discretionary activities and time use: do social contexts matter?," Journal of Transport Geography, Elsevier, vol. 47(C), pages 119-127.
  16. Wu, Guoqiang & Hong, Jinhyun, 2022. "An analysis of the role of residential location on the relationships between time spent online and non-mandatory activity-travel time use over time," Journal of Transport Geography, Elsevier, vol. 102(C).
  17. Ho, Chinh Q. & Mulley, Corinne, 2013. "Multiple purposes at single destination: A key to a better understanding of the relationship between tour complexity and mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 206-219.
  18. Moyin Li & Nebiyou Tilahun, 2020. "A comparative analysis of discretionary time allocation for social and non-social activities in the U.S. between 2003 and 2013," Transportation, Springer, vol. 47(2), pages 893-909, April.
  19. Badiola, Nicolás & Raveau, Sebastián & Galilea, Patricia, 2019. "Modelling preferences towards activities and their effect on departure time choices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 39-51.
  20. Iragaël Joly & Karl Littlejohn & Vincent Kaufmann, 2006. "La croissance des budgets-temps de transport en question : nouvelles approches," Post-Print halshs-00174992, HAL.
  21. Guoqiang Wu & Jinhyun Hong & Piyushimita Thakuriah, 2022. "Investigating the temporal changes in the relationships between time spent on the internet and non-mandatory activity-travel time use," Transportation, Springer, vol. 49(1), pages 213-235, February.
  22. Longden, Thomas, 2016. "The Regularity and Irregularity of Travel: an Analysis of the Consistency of Travel Times Associated with Subsistence, Maintenance and Discretionary Activities," ETA: Economic Theory and Applications 243150, Fondazione Eni Enrico Mattei (FEEM).
  23. Lee, Backjin & Timmermans, Harry J.P., 2007. "A latent class accelerated hazard model of activity episode durations," Transportation Research Part B: Methodological, Elsevier, vol. 41(4), pages 426-447, May.
  24. Ram Pendyala & Chandra Bhat, 2004. "An Exploration of the Relationship between Timing and Duration of Maintenance Activities," Transportation, Springer, vol. 31(4), pages 429-456, November.
  25. Cantelmo, Guido & Viti, Francesco, 2019. "Incorporating activity duration and scheduling utility into equilibrium-based Dynamic Traffic Assignment," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 365-390.
  26. Wang, Donggen & Li, Jiukun, 2009. "A model of household time allocation taking into consideration of hiring domestic helpers," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 204-216, February.
  27. Dane, Gamze & Arentze, Theo A. & Timmermans, Harry J.P. & Ettema, Dick, 2014. "Simultaneous modeling of individuals’ duration and expenditure decisions in out-of-home leisure activities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 93-103.
  28. Punyabeet Sarangi & M. Manoj, 2022. "Analysis of activity participation and time use decisions of partners: the context of low-and high-income households," Transportation, Springer, vol. 49(3), pages 1017-1058, June.
  29. Pawlak, Jacek & Polak, John W. & Sivakumar, Aruna, 2015. "Towards a microeconomic framework for modelling the joint choice of activity–travel behaviour and ICT use," Transportation Research Part A: Policy and Practice, Elsevier, vol. 76(C), pages 92-112.
  30. Marcela Munizaga & Sergio Jara-Díaz & Javiera Olguín & Jorge Rivera, 2011. "Generating twins to build weekly time use data from multiple single day OD surveys," Transportation, Springer, vol. 38(3), pages 511-524, May.
  31. Golob, Thomas F. & Regan, A C, 2000. "Impacts of Information Technology on Personal Travel and Commercial Vehicle Operations: Research Challenges and Opportunities," University of California Transportation Center, Working Papers qt0zh556db, University of California Transportation Center.
  32. Kuriyama, Koichi & Shoji, Yasushi & Tsuge, Takahiro, 2020. "The value of leisure time of weekends and long holidays: The multiple discrete–continuous extreme value (MDCEV) choice model with triple constraints," Journal of choice modelling, Elsevier, vol. 37(C).
  33. I. Meloni & L. Guala & A. Loddo, 2004. "Time allocation to discretionary in-home, out-of-home activities and to trips," Transportation, Springer, vol. 31(1), pages 69-96, February.
  34. Zhou Hui-fen & Li Zhen-shan & Xue Dong-qian & Lei Yang, 2012. "Time Use Patterns Between Maintenance, Subsistence and Leisure Activities: A Case Study in China," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 105(1), pages 121-136, January.
  35. Hui Wang & Mei-Po Kwan & Mingxing Hu & Junheng Qi & Jiemin Zheng & Bin Han, 2022. "Time Allocation and the Activity-Space-Based Segregation of Different Income Groups: A Case Study of Nanjing," Land, MDPI, vol. 11(10), pages 1-17, October.
  36. Langerudi, Mehran Fasihozaman & Javanmardi, Mahmoud & Shabanpour, Ramin & Rashidi, Taha Hossein & Mohammadian, Abolfazl, 2017. "Incorporating in-home activities in ADAPTS activity-based framework: A sequential conditional probability approach," Journal of Transport Geography, Elsevier, vol. 61(C), pages 48-60.
  37. Toshiyuki Yamamoto & Ryuichi Kitamura & Ram M Pendyala, 2004. "Comparative Analysis of Time-Space Prism Vertices for Out-of-Home Activity Engagement on Working and Nonworking Days," Environment and Planning B, , vol. 31(2), pages 235-250, April.
  38. Lee, Yuhwa & Hickman, Mark & Washington, Simon, 2007. "Household type and structure, time-use pattern, and trip-chaining behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(10), pages 1004-1020, December.
  39. Iragaël Joly & Stéphanie Vincent-Geslin, 2016. "Intensive travel time: an obligation or a choice?," Post-Print halshs-01309467, HAL.
  40. Ettema, Dick & Bastin, Fabian & Polak, John & Ashiru, Olu, 2007. "Modelling the joint choice of activity timing and duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(9), pages 827-841, November.
  41. Yao, Mingzhu & Wang, Donggen & Yang, Hai, 2017. "A game-theoretic model of car ownership and household time allocation," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 667-685.
  42. Hejun Kang & Darren Scott, 2011. "Impact of different criteria for identifying intra-household interactions: a case study of household time allocation," Transportation, Springer, vol. 38(1), pages 81-99, January.
  43. Chen, Quizi, 2001. "An Exploration of Activity Scheduling and Rescheduling Processes," University of California Transportation Center, Working Papers qt9kb4q6vt, University of California Transportation Center.
  44. Gulsah Akar & Kelly Clifton & Sean Doherty, 2011. "Discretionary activity location choice: in-home or out-of-home?," Transportation, Springer, vol. 38(1), pages 101-122, January.
  45. Han Dong & Cinzia Cirillo & Marco Diana, 2018. "Activity involvement and time spent on computers for leisure: an econometric analysis on the American Time Use Survey dataset," Transportation, Springer, vol. 45(2), pages 429-449, March.
  46. Pinjari, Abdul Rawoof & Bhat, Chandra R. & Hensher, David A., 2009. "Residential self-selection effects in an activity time-use behavior model," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 729-748, August.
  47. Joly, I., 2011. "Test of the relation between travel and activities times : different representations of a demand derived from activity participation," Working Papers 201103, Grenoble Applied Economics Laboratory (GAEL).
  48. Morris, Eric A. & Blumenberg, Evelyn & Guerra, Erick, 2020. "Does lacking a car put the brakes on activity participation? Private vehicle access and access to opportunities among low-income adults," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 375-397.
  49. Khandker Habib, 2011. "A random utility maximization (RUM) based dynamic activity scheduling model: Application in weekend activity scheduling," Transportation, Springer, vol. 38(1), pages 123-151, January.
  50. Lee, Yuhwa & Washington, Simon & Frank, Lawrence D., 2009. "Examination of relationships between urban form, household activities, and time allocation in the Atlanta Metropolitan Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(4), pages 360-373, May.
  51. Cho, WooKeol & Chung, Jin-Hyuk & Kim, Jinhee, 2023. "Need-based approach for modeling multiday activity participation patterns and identifying the impact of activity/travel conditions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
  52. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
  53. Longden, Thomas, 2016. "The Regularity and Irregularity of Travel: an Analysis of the Consistency of Travel Times Associated with Subsistence, Maintenance and Discretionary Activities," ET: Economic Theory 243150, Fondazione Eni Enrico Mattei (FEEM).
  54. Morris, Eric A. & Speroni, Samuel & Taylor, Brian D., 2023. "Going nowhere fast: Might changing activity patterns help explain falling travel?," Journal of Transport Geography, Elsevier, vol. 110(C).
  55. Yusak Susilo & Kay Axhausen, 2014. "Repetitions in individual daily activity–travel–location patterns: a study using the Herfindahl–Hirschman Index," Transportation, Springer, vol. 41(5), pages 995-1011, September.
  56. Shaohui Wu & Yong Tan & Yubo Chen & Yitian (Sky) Liang, 2022. "How Is Mobile User Behavior Different? A Hidden Markov Model of Cross-Mobile Application Usage Dynamics," Information Systems Research, INFORMS, vol. 33(3), pages 1002-1022, September.
  57. Ge Gao & Huijun Sun & Jianjun Wu, 2019. "Activity-based trip chaining behavior analysis in the network under the parking fee scheme," Transportation, Springer, vol. 46(3), pages 647-669, June.
  58. Kang, Hejun & Scott, Darren M., 2010. "Exploring day-to-day variability in time use for household members," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(8), pages 609-619, October.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.