IDEAS home Printed from https://ideas.repec.org/r/fip/fednsr/327.html
   My bibliography  Save this item

Revisiting useful approaches to data-rich macroeconomic forecasting

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Cepni, Oguzhan & Clements, Michael P., 2024. "How local is the local inflation factor? Evidence from emerging European countries," International Journal of Forecasting, Elsevier, vol. 40(1), pages 160-183.
  2. Eickmeier, Sandra & Ng, Tim, 2011. "Forecasting national activity using lots of international predictors: An application to New Zealand," International Journal of Forecasting, Elsevier, vol. 27(2), pages 496-511, April.
  3. Emmanuel C. Mamatzakis & Mike G. Tsionas, 2020. "Revealing forecaster's preferences: A Bayesian multivariate loss function approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 412-437, April.
  4. Eric Hillebrand & Huiyu Huang & Tae-Hwy Lee & Canlin Li, 2018. "Using the Entire Yield Curve in Forecasting Output and Inflation," Econometrics, MDPI, vol. 6(3), pages 1-27, August.
  5. Exterkate, Peter & Groenen, Patrick J.F. & Heij, Christiaan & van Dijk, Dick, 2016. "Nonlinear forecasting with many predictors using kernel ridge regression," International Journal of Forecasting, Elsevier, vol. 32(3), pages 736-753.
  6. Kai Carstensen & Steffen Henzel & Johannes Mayr & Klaus Wohlrabe, 2009. "IFOCAST: Methoden der ifo-Kurzfristprognose," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(23), pages 15-28, December.
  7. Hyeongwoo Kim & Kyunghwan Ko, 2017. "Improving Forecast Accuracy of Financial Vulnerability: Partial Least Squares Factor Model Approach," Working Papers 2017-14, Economic Research Institute, Bank of Korea.
  8. Mihnea Constantinescu, 2023. "Sparse Warcasting," Working Papers 01/2023, National Bank of Ukraine.
  9. Daniel Borup & Erik Christian Montes Schütte, 2022. "In Search of a Job: Forecasting Employment Growth Using Google Trends," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 186-200, January.
  10. Bräuning, Falk & Koopman, Siem Jan, 2014. "Forecasting macroeconomic variables using collapsed dynamic factor analysis," International Journal of Forecasting, Elsevier, vol. 30(3), pages 572-584.
  11. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
  12. Alexander Chudik & M. Hashem Pesaran, 2016. "Theory And Practice Of Gvar Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 30(1), pages 165-197, February.
  13. Gianluca Cubadda & Alain Hecq, 2011. "Testing for common autocorrelation in data‐rich environments," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(3), pages 325-335, April.
  14. Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
  15. Miguel C. Herculano & Santiago Montoya-Bland'on, 2024. "Probabilistic Targeted Factor Analysis," Papers 2412.06688, arXiv.org.
  16. Jan J. J. Groen & George Kapetanios, 2009. "Model selection criteria for factor-augmented regressions," Staff Reports 363, Federal Reserve Bank of New York.
  17. Kim, Hyeongwoo & Ko, Kyunghwan, 2020. "Improving forecast accuracy of financial vulnerability: PLS factor model approach," Economic Modelling, Elsevier, vol. 88(C), pages 341-355.
  18. Eickmeier, Sandra & Ng, Tim, 2015. "How do US credit supply shocks propagate internationally? A GVAR approach," European Economic Review, Elsevier, vol. 74(C), pages 128-145.
  19. Jan J. J. Groen & Paolo A. Pesenti, 2011. "Commodity Prices, Commodity Currencies, and Global Economic Developments," NBER Chapters, in: Commodity Prices and Markets, pages 15-42, National Bureau of Economic Research, Inc.
  20. Julieta Fuentes & Pilar Poncela & Julio Rodríguez, 2015. "Sparse Partial Least Squares in Time Series for Macroeconomic Forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 576-595, June.
  21. Joseph, Andreas & Potjagailo, Galina & Chakraborty, Chiranjit & Kapetanios, George, 2024. "Forecasting UK inflation bottom up," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1521-1538.
  22. Dalibor Stevanovic & Rachidi Kotchoni & Maxime Leroux, 2017. "Forecasting economic activity in data-rich environment," CIRANO Working Papers 2017s-05, CIRANO.
  23. Dendramis, Y. & Tzavalis, E. & Varthalitis, P. & Athanasiou, E., 2020. "Predicting default risk under asymmetric binary link functions," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1039-1056.
  24. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
  25. Chudik, Alexander & Grossman, Valerie & Pesaran, M. Hashem, 2016. "A multi-country approach to forecasting output growth using PMIs," Journal of Econometrics, Elsevier, vol. 192(2), pages 349-365.
  26. Fuentes, Julieta & Poncela, Pilar & Rodríguez, Julio, 2014. "Selecting and combining experts from survey forecasts," DES - Working Papers. Statistics and Econometrics. WS ws140905, Universidad Carlos III de Madrid. Departamento de Estadística.
  27. Wang, Xiangning & Zhao, Xing, 2014. "The invoicing currency choice model of export enterprises assuming joint utility maximization and analysis of the factors influencing selection," Economic Modelling, Elsevier, vol. 42(C), pages 38-42.
  28. Boot, Tom & Nibbering, Didier, 2019. "Forecasting using random subspace methods," Journal of Econometrics, Elsevier, vol. 209(2), pages 391-406.
  29. Wolfgang Nierhaus & Timo Wollmershäuser, 2016. "ifo Konjunkturumfragen und Konjunkturanalyse: Band II," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 72.
  30. Eliana González, 2011. "Forecasting With Many Predictors. An Empirical Comparison," Borradores de Economia 7996, Banco de la Republica.
  31. Pierre Guérin & Danilo Leiva-Leon & Massimiliano Marcellino, 2020. "Markov-Switching Three-Pass Regression Filter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 285-302, April.
  32. Cubadda, Gianluca & Guardabascio, Barbara, 2012. "A medium-N approach to macroeconomic forecasting," Economic Modelling, Elsevier, vol. 29(4), pages 1099-1105.
  33. Rachidi Kotchoni & Maxime Leroux & Dalibor Stevanovic, 2019. "Macroeconomic forecast accuracy in a data‐rich environment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1050-1072, November.
  34. Oguzhan Cepni, Duc Khuong Nguyen, and Ahmet Sensoy, 2022. "News Media and Attention Spillover across Energy Markets: A Powerful Predictor of Crude Oil Futures Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
  35. Barbarino, Alessandro & Bura, Efstathia, 2024. "Forecasting Near-equivalence of Linear Dimension Reduction Methods in Large Panels of Macro-variables," Econometrics and Statistics, Elsevier, vol. 31(C), pages 1-18.
  36. Duo Qin & Sophie van Huellen & Qing Chao Wang & Thanos Moraitis, 2022. "Algorithmic Modelling of Financial Conditions for Macro Predictive Purposes: Pilot Application to USA Data," Econometrics, MDPI, vol. 10(2), pages 1-22, April.
  37. Sarthak Behera & Hyeongwoo Kim, 2019. "Forecasting Dollar Real Exchange Rates and the Role of Real Activity Factors," Auburn Economics Working Paper Series auwp2019-04, Department of Economics, Auburn University.
  38. Mayr, Johannes, 2010. "Forecasting Macroeconomic Aggregates," Munich Dissertations in Economics 11140, University of Munich, Department of Economics.
  39. Hyeongwoo Kim & Jisoo Son, 2023. "Forecasting Net Charge-Off Rates of Large U.S. Bank Holding Companies using Macroeconomic Latent Factors," Auburn Economics Working Paper Series auwp2023-02, Department of Economics, Auburn University.
  40. Scott A. Brave & R. Andrew Butters & David Kelley, 2019. "A New “Big Data” Index of U.S. Economic Activity," Economic Perspectives, Federal Reserve Bank of Chicago, issue 1, pages 1-30.
  41. Jan J. J. Groen & Michael Nattinger, 2020. "Alternative Indicators for Chinese Economic Activity Using Sparse PLS Regression," Economic Policy Review, Federal Reserve Bank of New York, vol. 26(4), pages 39-68, October.
  42. Adrian, Tobias & Etula, Erkko & Groen, Jan J.J., 2011. "Financial amplification of foreign exchange risk premia," European Economic Review, Elsevier, vol. 55(3), pages 354-370, April.
  43. Eraslan, Sercan & Nöller, Marvin, 2020. "Recession probabilities falling from the STARs," Discussion Papers 08/2020, Deutsche Bundesbank.
  44. Cubadda, Gianluca & Guardabascio, Barbara, 2019. "Representation, estimation and forecasting of the multivariate index-augmented autoregressive model," International Journal of Forecasting, Elsevier, vol. 35(1), pages 67-79.
  45. Luciani, Matteo, 2014. "Forecasting with approximate dynamic factor models: The role of non-pervasive shocks," International Journal of Forecasting, Elsevier, vol. 30(1), pages 20-29.
  46. Hutchinson, Mark C. & Kyziropoulos, Panagiotis E. & O'Brien, John & O'Reilly, Philip & Sharma, Tripti, 2022. "Are carry, momentum and value still there in currencies?," International Review of Financial Analysis, Elsevier, vol. 83(C).
  47. Eddie Casey, 2019. "Inside the "Upside Down": Estimating Ireland's Output Gap," The Economic and Social Review, Economic and Social Studies, vol. 50(1), pages 5-34.
  48. Oguzhan Cepni & Rangan Gupta & I. Ethem Güney & M. Yilmaz, 2020. "Forecasting local currency bond risk premia of emerging markets: The role of cross‐country macrofinancial linkages," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 966-985, September.
  49. Pierre Guérin & Danilo Leiva-Leon & Massimiliano Marcellino, 2020. "Markov-Switching Three-Pass Regression Filter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 285-302, April.
  50. Cheng, Mingmian & Swanson, Norman R. & Yang, Xiye, 2021. "Forecasting volatility using double shrinkage methods," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 46-61.
  51. Alessandro Barbarino & Efstathia Bura, 2017. "A Unified Framework for Dimension Reduction in Forecasting," Finance and Economics Discussion Series 2017-004, Board of Governors of the Federal Reserve System (U.S.).
  52. Erik Christian Montes Schütte, 2018. "In Search of a Job: Forecasting Employment Growth in the US using Google Trends," CREATES Research Papers 2018-25, Department of Economics and Business Economics, Aarhus University.
  53. Periklis Gogas & Theophilos Papadimitriou & Emmanouil Sofianos, 2022. "Forecasting unemployment in the euro area with machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 551-566, April.
  54. Alessandro Barbarino & Efstathia Bura, 2015. "Forecasting with Sufficient Dimension Reductions," Finance and Economics Discussion Series 2015-74, Board of Governors of the Federal Reserve System (U.S.).
  55. Duo Qin & Qingchao Wang, 2016. "Predictive Macro-Impacts of PLS-based Financial Conditions Indices: An Application to the USA," Working Papers 201, Department of Economics, SOAS University of London, UK.
  56. Biing-Shen Kuo & Su-Ling Peng, 2011. "Price Pass-Through, Household Expenditure, and Industrial Structure: The Case of Taiwan," NBER Chapters, in: Commodity Prices and Markets, pages 237-255, National Bureau of Economic Research, Inc.
  57. Matthew Pritsker, 2017. "Choosing Stress Scenarios for Systemic Risk Through Dimension Reduction," Supervisory Research and Analysis Working Papers RPA 17-4, Federal Reserve Bank of Boston.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.