IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v30y2015i4p576-595.html

Sparse Partial Least Squares in Time Series for Macroeconomic Forecasting

Author

Listed:
  • Julieta Fuentes
  • Pilar Poncela
  • Julio Rodríguez

Abstract

Factor models have been applied extensively for forecasting when high‐dimensional datasets are available. In this case, the number of variables can be very large. For instance, usual dynamic factor models in central banks handle over 100 variables. However, there is a growing body of literature indicating that more variables do not necessarily lead to estimated factors with lower uncertainty or better forecasting results. This paper investigates the usefulness of partial least squares techniques that take into account the variable to be forecast when reducing the dimension of the problem from a large number of variables to a smaller number of factors. We propose different approaches of dynamic sparse partial least squares as a means of improving forecast efficiency by simultaneously taking into account the variable forecast while forming an informative subset of predictors, instead of using all the available ones to extract the factors. We use the well‐known Stock and Watson database to check the forecasting performance of our approach. The proposed dynamic sparse models show good performance in improving efficiency compared to widely used factor methods in macroeconomic forecasting. Copyright © 2014 John Wiley & Sons, Ltd.

Suggested Citation

  • Julieta Fuentes & Pilar Poncela & Julio Rodríguez, 2015. "Sparse Partial Least Squares in Time Series for Macroeconomic Forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 576-595, June.
  • Handle: RePEc:wly:japmet:v:30:y:2015:i:4:p:576-595
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco Corona & Graciela González-Farías & Pedro Orraca, 2017. "A dynamic factor model for the Mexican economy: are common trends useful when predicting economic activity?," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 26(1), pages 1-35, December.
    2. Juan, Aranzazu de & Poncela, Pilar & Ruiz Ortega, Esther, 2023. "Economic activity and C02 emissions in Spain," DES - Working Papers. Statistics and Econometrics. WS 37975, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Stamer, Vincent, 2022. "Thinking Outside the Container: A Sparse Partial Least Squares Approach to Forecasting Trade Flows," VfS Annual Conference 2022 (Basel): Big Data in Economics 264096, Verein für Socialpolitik / German Economic Association.
    4. Fuentes, Julieta & Poncela, Pilar & Rodríguez, Julio, 2014. "Selecting and combining experts from survey forecasts," DES - Working Papers. Statistics and Econometrics. WS ws140905, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Stamer, Vincent, 2024. "Thinking outside the container: A sparse partial least squares approach to forecasting trade flows," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1336-1358.
    6. Bae, Juhee, 2024. "Factor-augmented forecasting in big data," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1660-1688.
    7. Marine Carrasco & Barbara Rossi, 2016. "In-Sample Inference and Forecasting in Misspecified Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 313-338, July.
    8. Tommaso Proietti, 2016. "On the Selection of Common Factors for Macroeconomic Forecasting," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 593-628, Emerald Group Publishing Limited.
    9. Hwee Kwan Chow & Yijie Fei & Daniel Han, 2023. "Forecasting GDP with many predictors in a small open economy: forecast or information pooling?," Empirical Economics, Springer, vol. 65(2), pages 805-829, August.
    10. Cheng, Mingmian & Swanson, Norman R. & Yang, Xiye, 2021. "Forecasting volatility using double shrinkage methods," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 46-61.
    11. Cepni, Oguzhan & Clements, Michael P., 2024. "How local is the local inflation factor? Evidence from emerging European countries," International Journal of Forecasting, Elsevier, vol. 40(1), pages 160-183.
    12. Constantin ANGHELACHE & Madalina-Gabriela ANGHEL & Tudor SAMSON & Radu STOICA, 2017. "Methods And Techniques For Preparing Forecasts," Romanian Statistical Review Supplement, Romanian Statistical Review, vol. 65(4), pages 26-36, April.
    13. Karen Miranda & Pilar Poncela & Esther Ruiz, 2022. "Dynamic factor models: Does the specification matter?," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 13(1), pages 397-428, May.
    14. Kai Carstensen & Felix Kießner & Thies Rossian, 2024. "Estimation of the TFP Gap for the Largest Five EMU Countries," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 20(2), pages 243-296, July.
    15. Aránzazu Juan & Pilar Poncela & Esther Ruiz, 2025. "Economic activity and $$\hbox {CO}_2$$ CO 2 emissions in Spain," Empirical Economics, Springer, vol. 68(3), pages 1379-1408, March.
    16. Cheung, Yin-Wong & Wang, Wenhao, 2022. "Uncovered interest rate parity redux: Non-uniform effects," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 133-151.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:30:y:2015:i:4:p:576-595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.