IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Improving Forecast Accuracy of Financial Vulnerability: PLS Factor Model Approach

Listed author(s):
  • Hyeongwoo Kim
  • Kyunghwan Ko

We present a factor augmented forecasting model for assessing the financial vulnerability in Korea. Dynamic factor models often extract latent common factors from a large panel of time series data via the method of the principal components (PC). Instead, we employ the partial least squares (PLS) method that estimates target specific common factors, utilizing covariances between predictors and the target variable. Applying PLS to 198 monthly frequency macroeconomic time series variables and the Bank of Korea's Financial Stress Index (KFSTI), our PLS factor augmented forecasting models consistently outperformed the random walk benchmark model in out-of-sample prediction exercises in all forecast horizons we considered. Our models also outperformed the autoregressive benchmark model in short-term forecast horizons. We expect our models would provide useful early warning signs of the emergence of systemic risks in Korea's financial markets.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://cla.auburn.edu/econwp/Archives/2017/2017-03.pdf
Download Restriction: no

Paper provided by Department of Economics, Auburn University in its series Auburn Economics Working Paper Series with number auwp2017-03.

as
in new window

Length:
Date of creation: May 2017
Handle: RePEc:abn:wpaper:auwp2017-03
Contact details of provider: Postal:
0326 Haley Center, Auburn University, AL 36849-5049

Phone: (334) 844-4910
Fax: (334) 844-4615
Web page: http://cla.auburn.edu/economics/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Cipollini, A. & Kapetanios, G., 2009. "Forecasting financial crises and contagion in Asia using dynamic factor analysis," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 188-200, March.
  2. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
  3. Girton, Lance & Roper, Don, 1977. "A Monetary Model of Exchange Market Pressure Applied to the Postwar Canadian Experience," American Economic Review, American Economic Association, vol. 67(4), pages 537-548, September.
  4. Frankel, Jeffrey A. & Rose, Andrew K., 1996. "Currency crashes in emerging markets: An empirical treatment," Journal of International Economics, Elsevier, vol. 41(3-4), pages 351-366, November.
  5. El-Shagi, M. & Knedlik, T. & von Schweinitz, G., 2013. "Predicting financial crises: The (statistical) significance of the signals approach," Journal of International Money and Finance, Elsevier, vol. 35(C), pages 76-103.
  6. Frankel, Jeffrey A. & Rose, Andrew K., 1996. "Currency Crashes in Emerging Markets: Empirical Indicators," Center for International and Development Economics Research (CIDER) Working Papers 233424, University of California-Berkeley, Department of Economics.
  7. Groen, Jan J.J. & Kapetanios, George, 2016. "Revisiting useful approaches to data-rich macroeconomic forecasting," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 221-239.
  8. Hyeongwoo Kim & Wen Shi & Hyun Hak Kim, 2016. "Forecasting Financial Stress Indices in Korea: A Factor Model Approach," Auburn Economics Working Paper Series auwp2016-10, Department of Economics, Auburn University.
  9. Hali J. Edison, 2003. "Do indicators of financial crises work? An evaluation of an early warning system," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 8(1), pages 11-53.
  10. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
  11. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
  12. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:abn:wpaper:auwp2017-03. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Hyeongwoo Kim)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.